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DISCLAIMER 

 

These notes cover the arguments of the course ‘Digital Integrated Circuit Design’ held by Professor A. 

Bonfanti at Politecnico di Milano during the academic year 2022-2023. 

 

Since they have been authored by a student, errors and imprecisions can be present. 

 

These notes don’t aim at being a substitute for the lectures of Professor Bonfanti, but a simple useful tool 

for any student (life at PoliMi is already hard as it is, cooperating is nothing but the bare minimum). 

 

Please remember that for a complete understanding of the subject there is no better way than directly 

attending the course (DIY), which is an approach that I personally suggest to anyone. Indeed, the course 

is really enjoyable and the professor very clear. 

 

In any case, if you found these notes particularly helpful and want to buy me a coffee for the effort, you’re 

more than welcome: https://paypal.me/LucaColomboxc 
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DIGITAL INTEGRATED CIRCUIT DESIGN 

 

Digital means binary, 0 and 1. In digital electronic noise has to be intended as a sort of interference, not 

actually noise. There is also a deterministic noise in binary digital electronics, that corrupts the signal, 

and it is the quantization noise, which can be reduced increasing the number of bits. 

The other advantage is that in the digital domain it is very easy to store data, exploiting the concept of 

positive feedback or with a capacitor (capacitor charged to Vdd or discharged is called dynamic memory). 

The last advantage is that it is easy to process data with respect to the analog domain. Also filtering in 

the digital domain is very easy. 

 

DIGITALIZATION OF INTEGRATED CIRCUIT 

If we consider an integrated circuit that wants to read the signal from a sensor and to elaborate it, typically 

we have: the sensor, anz amplifier with low noise to increase the dynamic range of the signal (voltage or 

current), a simple filter (1st or 2nd order) and then an ADC. After the ADC we have a digital circuit (DCP) 

to perform all the complex operations. The analog part is mandatory in the IC because the signal we 

acquire is for sure analog. 

 

Then, let’s consider truly digital circuit, like the microprocessors. They are becoming very complex, fast 

and power hungry. This is possible thanks to two great advancements in the electronics in general, that 

are: 

- Process technology scaling: reduction of the dimensions of the transistors. 

- Efficient design tools: for instance the semi-custom approach based on the standard cell library. 
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CMOS TECHNOLOGY SCALING 
 

It is the reduction of the transistor dimensions, typically the length, together with the oxide thickness, the 

power supply and the threshold voltage. This is the technology scaling. In fact, the reduction of the 

dimensions leads to a reduction of the area and hence the cost per transistor, and we can also implement 

more transistors in the same area. Moreover, we also increase the speed of the transistor (cut-off 

frequency) because the parasitic capacitances are smaller if we reduce the dimensions. If we reduce the 

length, the electron time to move from source to drain is smaller and so the transistor is faster. 

 

The dynamic power consumption is P = C * Vdd^2 * f. 

C is the capacitance we have to charge and discharge, f is the frequency with which we do it. 

 

BREAKTHROUGHS  

 

Before 1948, all circuits were implemented using thermionic valves, so vacuum tubes, which were not 

reliable and power hungry. 

Kilby designed the first IC; he put more transistors on the same substrate of Germanium. Then, in 1959 

Noyce (founder of Intel with Moore) designed an IC. The difference with Kilby is that it is less rudimental 

and more similar to modern IC. It considers 3 aspects: 

- Transistors assembled on the same substrate. 

- Isolation of transistors: done with reverse bias pn junction, otherwise transistors talk to each 

other. 

- Interconnections on the IC (Kilby did it with flying wires outside the IC). 

 

In 1959 the first MOS transistor was implemented. From 1968 on, MOSFET overwhelmed BJT, because 

we can implement very powerful switches, which are very important in digital electronics. BJTs are more 

of analog devices (e.g. to implement current generators). 
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The first problem with the MOS transistor was that the gate was difficulty placed over the substrate, e.g. 

leaving spaces between the gate area and the n+ wells. Otherwise, the gate was overlapped on the n+ 

wells. In the first case the transistor is not working, while in the latter case we are creating a large parasitic 

capacitance, so the device is very slow. 

Then Federico Faggin, in 1968, implemented the gate first and then the n+ well regions. We still might 

have a lateral spread under the gate area, but below the gate there are no ions because the polysilicon 

gate prevents the ion to reach the channel → self-aligned gate technology. Now the device is working and 

also very fast. 

 

In 1971, Faggin also implemented the first microprocessor, the Intel 4004. 

 

Nowadays, the technology is of 10 nm, and billions of transistors with an operating frequency of GHz. 

The power consumption is increased, but 250W is something we can deal with. 

 

GLOBAL TREND FOR MICROPROCESSORS 

In the chart we describe the evolution of 

microprocessors in the last years. The 

number of transistor we find in an IC is 

increasing exponentially (logarithmic 

scale). Also the frequency is increasing, 

even if we are reaching a plateau. 

 

Power consumption is almost flat, 

constant. This is possible because if we 

consider the previous formula for P, and 

C is the capacitance of a single transistor, 

the overall power consumption is the sum 

of all the single power consumptions. 
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If the number of transistor is exponentially increasing, Vdd is decreasing and f is increasing, but the C for 

the single transistor is decreasing → we are in the end counterbalancing the effects. 

In the chart we can thus observe all the advantages of the technology scaling: 

- Less cost per transistor 

- Higher running frequency 

- Small power consumption 

The operating frequency is rather constant after 2000 more or less at 6 GHz because the problem is the 

power density. If we increase the frequency, for a small area, we increase the power, and Silicon can 

withstand at max 100 W/cm^2, so we eventually run the risk to burn Silicon. So what we do is, rather 

than increasing the frequency of one single core, we implement more cores in a microprocessor. 

 

Scaling of CMOS gate length 

Plot of the minimum length vs year of entrance in the market. It is an exponential decrease, and it is 

called Moore’s law. Moore predicted, in 1965, that every two years we will have at disposal a new 

technology with a decrease in length of a factor sqrt(2). 

 

Year 2011 is a fork. Before it we have planar devices (classical MOS transistors) and form 2011 on 

FINFET are used. It follows the same equations of a planar MOS transistor, but the gate surrounds by 

three sides the channel. In fact, the scaling of the planar MOS is problematic because of the increase of 

the subthreshold current and the DIBL effect arises (threshold voltage depends on the drain voltage, so 

we have no more a transistor). 

With the FINFET the gate gets back control of the channel. 

 

SEMI-CUSTOM ASICs 

It is not enough to have a powerful technology, we need to have efficient design tools to design digital 

ICs. 
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An ASIC is the application-specific integrated circuit. And ASIC for which the logic cells are pre designed 

is called semi-custom ASIC. Using predesigned cells from a library makes the design easier and faster. 

The most common approach is the standard-cell based approach. 

 

An example is in the following image. 

 

If we want to produce the mask of the IC to design it, we can do two things: 

- We design the circuit at transistor level, and this is the custom approach. With this approach, 

which is possible if the circuit is not complex, we maximize the performances, because each 

transistor is designed. If we want to decrease the design time, we use another approach. 

NB: the used length is always the minimum, and the only parameter the designer has to consider 

is the width (increasing the length, we improve the offset, we reduce the flicker noise and increase 

the gain, but there are all analog parameters, so not important in the digital domain). 

- We describe the circuit in a behavioral way (VHDL) and then there are tools to translate the 

behavioral code into a netlist of standard cells (NOT, AND, memories ecc.). Then the gates have 

also the layout (mask) available, so also the layout is performed automatically. Design time is 

reduced but maybe the circuit is not optimized. 
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DESIGN METRICS OF DIGITAL CIRCUITS 
- Cost (area) 

- Reliability 

- Speed (dynamic performance tau_p, propagation delay) 

- Power consumption 

 

COST 

In general, the cost of an IC is due to two factors: 

1. Recurring engineering costs: variable costs 

a. Silicon processing, packaging, test 

b. Proportional to volume 

c. Proportional to chip (die) area 

2. Non recurring engineering costs: fixed costs, they are not proportional to production volume: 

a. Design time and effort 

b. Mask generation: most impacting contribution 

c. Manufacturing machines and building 

 

 

 

The general cost for an IC can be calculated as: 

 

The first term is the RE costs per chip, the second one is divided by the number of chips we are producing. 

If we produce a lot of chips, the second term is negligible. 

The die cost is the cost to process the silicon by means of photolithographic process. All the three terms 

in the RE costs are proportional to the area. Also the packaging, if we increase the die, increases. Hence 

if we increase the complexity of the circuit, also the testing cost increases. 

 

Considering this expression, in the RE costs the die cost account for 80% of the overall RE costs. 

Furthermore, the NRE costs term at the numerator is very large, but negligible because it is divided by 

the number of chips we are producing. The more impacting factor here is the mask cost. 
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The mask cost is exponentially increasing with the increase of scaling. In old processes, number of masks 

was smaller, while now we have a larger number but also the cost increases. However, this cost is not 

impacting because divided by the production volume. 

 

How to create a chip 

We want to find a formula that relates the area and the cost. 

We start from an ingot, which is sliced in 1mm slices. The diameter of a wafer can be 20 or 30 cm. In the 

wafer, the chip is replicated as many times as possible with photolithographic process. Of course some 

area of the wafer is wasted. 

 

Die cost 

The wafer cost is around 1000$, it is a fixed cost. Then, in order to asses the die cost, we need to divide 

by the number of dies per wafer. The dies per wafer must be multiplied by the yield (resa), because not 

all the dies we create are working. So at the denominator we have the number of working dies. 

 

The number of dies we can implement in a wafer is computed considering the area of the wafer divided 

by the die area. To this term it is subtracted the fact that some area is wasted, which is the perimeter of 

the circle divided by the diagonal of the die. 
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Die yield 

Circuits with red spots are not working. In the second case we have a lot of working dies → the larger the 

area of the die, the smaller the yield. 

Defects per unit area is 1 or 0.1 defects per cm^2. We also notice that if we double the area, the cost is 4 

times larger according to the last formula. 

 

Example of die yield 

 

Let us make an example considering a wafer of 30 cm diameter, a die area of 2.5 cm^2 and a defect 

density of 1 defect/cm^2. The number of chips per wafer is 282 – 42 = 240, if we consider the above-

mentioned formula. Among these 240 dies, we have to consider that not all the dies work correctly. 

Applying the empiric formula of the yield, only 16% of the dies work fine, but because we start from a 

very large area. So only 40 dies are working → the smaller the die the better. 
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Thus, summarizing, we can observe that the die cost drastically depends on the die area. So, the area is 

a very important parameter at any level: at gate level, at module level and at system level. As far as the 

gate area is concerned, the number of transistors and their relative size (W and L) are the major 

parameters that set the area, but also the complexity of the gate can influence the area due to the routing 

of the interconnections. 

 

This slide shows some examples of integrated circuits with their corresponding area and cost. The table 

refers to microprocessors. First of all, note the cost of the wafer: It costs approximately 1000 dollars. 

Notice the number of defects per cm^2: approximately 1 defect per cm^2.  

 

Finally, note that the die area increases from top to bottom and the corresponding cost increases more 

than linearly with the die area. Finally, it’s worth noting that also the package cost is related to the die 

area: the larger the area, the larger the package (and maybe also with more pins due to a larger complexity 

of the circuit). We can notice that also the yield is decreasing, and the result is that the cost is increasing 

from top to bottom. The area is increased more or less of a factor of 5, the cost of 100. 

 

RELIABILITY 

Noise in digital integrated circuit 

 

Reliability means the ability of a circuit to be immune to digital noise → robustness against digital noise. 

Which are the sources of noise in a digital circuit? In an analog circuit, we deal with thermal, shot and 

flicker noise. This noise can alter the value of the voltage for example, which can assume all the values 

in the range between ground and power supply. In binary digital circuits, the signals can assume only 

two logic values, high or low, “1” or “0” typically corresponding to power supply voltage and ground. 

So thermal, shot and flicker noise are not important since they cannot alter the logic value of a voltage 

signal. In this slide you can see two examples of noise in digital circuits. 

 

Examples of digital noises are the following. 
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Capacitive coupling 

The first case is a capacitive coupling. If we consider a node whose voltage transitions from 0V to power 

supply value (step variation), this variation can couple to the input of a nearby inverter (supposed at 0V 

in this case), through a parasitic capacitance. In fact, the bottom capacitance is the gate capacitance Cg. 

We are implicitly assuming that the input of the inverter is a high impedance node (it can be modelled as 

a capacitance) and that it is driven by a high-impedance driver (which is a worst-case scenario). 

 

So we have the upper node that moves from 0 to Vdd, then the parasitic Cp and the Cg of the gate, which 

initially is at 0V, so the output of the inverter is Vdd. I’m considering the input of the inverter floating. 

The input of the inverter increases according to the capacitive voltage divider: Vdd* Cp / Cp + Cg. If Cp 

>> Cg, the ratio is almost Vdd, so we have in output of the inverter not Vdd but 0V, and this is an 

unwanted logical mistake. 

  

In a realistic scenario, the approximation Cp >> Cg doesn’t hold and the input of the inverter is not 

floating. Also the variation of voltage is not due to an ideal voltage generator, but due to another inverter 

and so on. If we suppose that instead of a realistic inverter for the supply of the capacitive divider we still 

have a voltage generator, if the r_on of the input inverter is 0 Ohm, we have a short and the generator 

cannot change the voltage in input of the inverter. This is a means with which we can reduce noise, using 

a small resistance. This can be done increasing the area of the transistor, so the width. 

 

Let’s create now a real situation, so r_on != 0 and the ‘aggressor’ not an ideal generator. The input of my 

inverter in the end goes to zero because the r_on is very small, but we have a peak in the middle. If the 

pulse flips the inverter we have a logical mistake. To reduce the probability of error we can: 

1. We improve the inverter reducing the output r_on of the input inverter. If r_on decreases, the 

pulse peak decreases. 

2. We decrease the coupling capacitor Cp moving away the aggressor, so that Cp decreases because 

the dielectric increases. 
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If the coupled variation is large enough, it can cause the inverter to change its output, from “1” to “0” in 

this case, determining a logic error. Obviously, the impedance of the driver is not infinite and the smaller 

it is the smaller the capacitive coupling is effective. The best case-scenario is an ideal driver, with a nil 

impedance at the output: in this case the capacitive coupling is not able to change the voltage at the input 

of the gate. 

 

Power and ground bounce 

We have two inverters in cascade but with two different PS. Let’s suppose that connected to the PS we 

have also other circuits that can switch on and off. When they turn on, the circuits sink current from the 

power line. Because of this current drawn, we have a bounce on the PS, so e.g. we go to 3V minus 

something. 

 

At the input of the inverter we suppose to have 0V. In the inverter we 

have a pMOS and a nMOS transistor, and the pMOS is on, having 3V 

at the output (Vdd). The pMOS is hence working in the linear (ohmic) 

region. So it behaves as a resistance r_on, that is smaller the bigger the 

area. If I have a bounce of the PS voltage, the output node of the first 

inverter bounces the same, because we have a resistance. hence the 

second inverter receives in input a bounce. If the delta_V of the bounce 

is large enough, we can commute the output. 

 

The same reasoning can then be repeated considering ground. 

 

In the second case, we deal with bouncing of power supply or ground → power and ground bounce. In 

this case, there is an interference on the two rails or one of the two rails of the power supply. This can 

cause a bounce of the output voltage. You need to consider that the inverter output is connected through 

a low impedance path to voltage supply or ground depending on its state. This bounce is not a problem 

for the first gate but for the following gate, whose rails are supposed not to be affected by noise and 

disturbances. Thus, the output variation of the first inverter can reflect on the second inverter that can 

toggle. 

 

Thus, the reliability is the capacity of a gate, or in general of a digital circuit, to be insensitive to digital 

noise. In particular, the concept of reliability is strictly related to the static performance of a gate, thus to 

its static characteristic. 
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Voltage transfer characteristic (VTC) 

In reality, digital circuit are very immune to noise even with strong interferences. Its reliability and 

immunity to noise is quantified by the voltage transfer characteristic. 

 

It quantifies the reliability of a circuit and it is the relationship between the input voltage and the output 

voltage. It is a steady state, DC characteristic. 

 

The curve we get in the image is the one of an inverter, but we have also a transition region in the middle. 

Voh is the nominal output high voltage. Vol is the nominal output low voltage. In order to asses Voh 

and Vol we need to use a recursive formula by definition, that is the one in the blue box. In reality they 

will be Vdd and ground. 

 

The difference between Voh and Vol is called voltage swing. The bigger the voltage swing, the better for 

the noise. So the voltage swing is somehow related to the reliability. 

 

The other voltage is the threshold voltage, that it is on the bisector. On the left we have a logical 1 at the 

output and on the right a logical 0 at the output. Vm defines somehow if the output is 0 or 1. 

 

Let us consider the simplest digital gate, the inverter. The inverter is a digital circuit that inverts the input 

logic signal. This means that if the input is high, the output is low, whereas if the input is high the output 

is low. We are talking about logic signals that can assume only two values, “0” and “1”. However, the 

inverter is a circuit which can receive at its input a voltage in the range between 0V and VDD, that is, 

from ground to the circuit supply voltage. The voltage static characteristic, known as VTC (Voltage 

Transfer Characteristic), is the function that relates the output to the input voltage. 

 

This slide shows the classical shape of the voltage transfer characteristic of an inverter. For a low input 

voltage, the output voltage is high and for a high input voltage the output voltage is low. In this 

characteristic, we can recognize some very important parameters: VOH, VOL, and VM. 

 

VOH stands for “high output voltage”, and it is equal to the output voltage corresponding to the high 

level (i.e., a logical “1”), whereas VOL stands for “low output voltage”, and it’s equal to the output 

voltage corresponding to the low level (i.e., a logical “0”). In other words, they are the nominal output 

voltage levels. 

If we set the input of the inverter to VOL, the output is VOH and vice-versa. If we consider VOH at the 

input of the inverter, the output voltage value is equal to VOL. These voltage values can be evaluated in 

a recursive way being: 

VOH=f(VOL) 

VOL=f(VOH). 
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The difference between VOH and VOL is called signal swing. 

 

The third important parameter of the VTC is the threshold voltage. This is defined as the input voltage 

that produces the same voltage at the output, i.e., VM=f(VM). In other words, it’s the abscissa and the 

ordinate of the intercept point between the VTC and the first quadrant bisector, the straight line that 

forms a 45° angle between the two axes. The threshold can be simply evaluated taking the circuit and 

connecting the input node to the output one. 

 

Why this intermediate voltage is so important? Because it defines the trigger voltage of the inverter. If we 

consider a very steep characteristic, the threshold voltage marks two regions, one corresponding to a low 

input (and thus high output), and one corresponding to a high input (and thus low output). Thus, at a 

first order approximation, we can consider that for input voltages smaller than VM the output is high and 

for voltages greater that VM the output is low. 

 

Mapping between analog and digital signal 

 

We have 3 regions: flat, transition and flat. The flat regions correspond to logical 1 and logical 0. If the 

inverter is an analog circuit, the dVout/dVin is the small signal gain. In the flat region it is close to 0, in 

the transition region it is very large. Hence the flat region is defined up to the point where the gain is -1. 

These points define the Vil (low input voltage, the maximum input voltage recognized as logical 0) and 

Vih (high input voltage, minimum input voltage recognized as logical 1). The problem in defining the 

output is when we are in the transition region. 

 

Let us consider the VTC of an inverter, which implies to consider the inverter as an analog circuit with 

an voltage input, VIN, and a voltage output, VOUT. We can define three regions: one region 

corresponding to the high logic level, one corresponding to the low logic level, and a transition or 

undefined region. The output voltage of the gate has to be in the two regions corresponding to “1” or “0” 

in order to correctly identify the logic values. 

 

These two regions are defined by two voltages, VIL and VIH, which stand for “low input voltage” and 

“high input voltage”, respectively. They correspond to the points on the characteristic having a slope of 

-1. In other words, they identify two flat regions in the voltage transfer characteristic, one corresponding 

to a low input (thus, high output) and the other one to a high input (thus, low output). We can consider 

VIL as the maximum input voltage corresponding to a logic “0” at the input, and VIH as the minimum 

input voltage corresponding to a logic “1” at the input. 
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DEFINITION OF NOISE MARGINS 

Let’s consider two inverters. The output of the inverter at steady state can be either Voh or Vol. The next 

one is characterized by Vih and Vil. 

The margin from Voh to Vih is the one that grants to have a 1 in the input of the second inverter and 

remain in the flat region. The Voh – Vih is called noise margin high (NMH). Same but opposite reasoning 

with Vol and Vil (NML). These noise margins quantify the reliability of the circuit, the larger the better. 

 

We can define the so-called noise margins which assess the reliability of a gate. Let us consider that our 

reference inverter is fed by another inverter whose output can be “0” or “1”. Thus, its output voltage, if 

no digital noise is present, can be VOH (“1”) or VOL (“0”). The second inverter, our reference inverter, 

has a margin of VOH-VIH to be sure that its input voltage is recognized as logic "1", and a margin of 

VIL-VOL to be sure that its input voltage is recognized as “0”. These two intervals are called noise margin 

high (NMH) and noise margin low (NML), respectively. They represent the maximum level of “noise” 

that a gate can tolerate at its input terminal without being affected by a logic error. Obviously, they have 

to be as large as possible. 

 

REGENERATIVE PROPERTY 

 

The inverter has the margins previously introduced to be immune to noise, but moreover the digital 

circuits have also the regenerative property. Even with a strong noise way beyond the noise margin we 

can solve the problem and have the output, they will never remain in the transition region with the output, 

at steady state the output will always be Voh or Vol, even if eventually wrong. 

 

In this case I’m considering 4 inverters in cascade. f(v) is the voltage transfer characteristic of all the 

inverters (bold line). The dashed line is the inverse transfer characteristic (finv(v)), I’m basically switching 

the axes, it is just a mathematical trick. So one point on the axis will be Vdd, the other 0V. 

x 



15 
 

Let’s suppose that V0 has to be nominally 0V, but let’s suppose that because of digital noise we have 

something larger than 0V. We know the value of Vm (x). The other assumption that I make is that V0 < 

Vm. V1 is the voltage on the direct characteristic that I have in input of the second inverter. Now I use 

the inverse characteristic, so I can read V2 from it. Now V2 is the input of the third inverter, so I use the 

direct characteristic. As last the inverse one form V4. 

 

So V0 is affected by noise that is larger over the noise margins but smaller than Vm, and what happens is 

that the output V4 is 0 like if there was no noise at the input. 

 

If V0 is so big that overcomes the switching threshold, the convergence is towards Vdd, it is a mistake 

but it is still convergent. The bottom line is that the circuits are able to regenerate. If the noise is not 

overcoming the Vm, the output is good.  

 

To say that a digital circuit is able to regenerate we need that the intermediate region has a gain (slope) 

in absolute value greater than 1. So every digital circuit must have two flat regions and a transition region 

with a slope greater than 1. 

On the right we have the opposite situation, so we are not regenerative. 

 

A large noise margin is desirable but there is another property that we desire for a digital gate. It’s the 

regenerative property. 

 

Let us suppose that the signal at the input of a simple gate, an inverter for example, is affected by digital 

noise. If the signal plus noise remains inside the margin there is no problem and the gate works fine even 

if the output voltage slightly differs from the nominal value, that is, VOH or VOL. On the contrary, if the 

noise is sufficiently high, it can bring the input signal outside the margin. However, even if the signal falls 

in the transition region, the output signal is regenerated if we consider some gates, inverters in our 

example, in cascade. This happens if the inverters show the regenerative property. Let’s explain the 

concept referring to four inverters in cascade. Let’s plot on the same graph both the direct function 

VOUT=f(VIN) and the inverse function VIN=finv(VOUT). This second function allows to evaluate the 

input voltage at the gate once its output voltage is known. So, for what concerns the inverse function, we 

read the output voltage on the horizontal axis and the corresponding input voltage on the y-axis. 

 

Now, let us suppose that V0 ideally has to be VOL, ground in the case shown in this slide. Because of an 

interference, this voltage becomes larger and falls in the transition region (but below the switching 

threshold voltage, VM). The voltage V1 can be evaluated considering the direct function. Now, since V1 

is the input voltage of the second inverter, its output voltage V2 can be inferred considering the inverse 

function. The voltage V3 can be again evaluated considering the direct function. Now, since V3 is close 

to VOH, V4 is close to VOL. Thus, after an even number of inverters we have regenerated the initial 

value of V0, being now the voltage close to 0V. 

 

It’s worth pointing out two remarks. First, the regenerative property consists of a transition region with 

a negative slope and an absolute value larger than 1. Second, in order to reestablish the correct value, the 

noise has not to bring the initial value over the threshold. The interference can bring the input signal 

inside the transition region but not over the threshold voltage, otherwise the regenerated signal is the 

opposite one, VOH in this case. 

 

Let us consider another example, plot in the right graph of this slide. Also, in this case we plot both the 

direct characteristic as solid line and the inverse function as dotted line. The inverter does not own the 

regenerative property since the transition region has a negative slope, but its absolute value is not larger 

than 1. It’s almost flat. 
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In fact, let us consider again the four cascaded inverters. The input voltage of the first inverter affected by 

a disturbance is V0. In this case, it can be easily verified that the voltage V4 is equal to the threshold, 

which is obviously in the middle of the transition region and thus it corresponds to neither “0” nor “1”. 

 

If the inverters have the regenerative property, we notice that even if the input is not rail to rail (V0), V1 

is already almost a full swing signal. After two inverters I have a full swing signal. 

 

This slide shows the result of a simulation involving 5 cascaded inverters, all supplied with 5V and having 

a switching threshold of 2.5V. The first one is fed by a periodic signal with a reduced swing, which runs 

from 2.1V to 2.9V. Note that after two inverters the signal has been already regenerated. 

 

KEY RELIABILITY PROPERTIES 

To maximize the immunity to noise we need to maximize the noise margins. Moreover, we can improve 

the reliability acting on the noise transfer function and on the output impedance of the driving inverter 

(r_on). So to reduce the effect of digital noise we can act on: noise margins, parasitic capacitances, driving 

circuits. 

 

Thus, absolute noise margins are important since they measure the ability of a circuit to be immune to 

digital noise, i.e., interferences and supply bounces. 

However, it’s always better to minimize, when possible, the “noise” transfer function and the output 

resistance of the driver in order to increase the reliability of a circuit. 

 

As far as the driver of a circuit is concerned, it’s clear that a floating node is more prone to cause logic 

errors than a node forced by a low-resistance driver. This will be an issue in dynamic gates. Dynamic 

gates are based on the storage of a charge on a capacitor that then is left floating. Thus, they are very 

prone to interferences and noise coupling. Indeed, static gates are characterized by a low-impedance 

driving of the output voltage, which is always connected through a low impedance path to either VDD 

or ground. The lower the output resistance of the driver, the better. Obviously, this comes at the expense 

of a larger area (cost) and a larger power consumption (due to increased parasitic capacitances). 



17 
 

SPEED: PROPAGATION DELAY OR MAXIMUM OPERATING FREQUENCY 

A digital circuit is typically characterized by a propagation delay between the input and the output. Let’s 

consider an inverter, and input voltage and an output one. The input signal is a square wave. The 

propagation delay is the time that elapses from the crossing of half of the range at the input and half of 

the range at the output. In the image the t are in reality tau. 

 

To simplify the analysis, we consider an ideal square at the input and a real one at the output. We use 

50% as the value because typically it is where the switching threshold is placed. In fact, if Vm is not at 

half Vdd we compromise either the low or high noise margin. 

 

In general, since tau_plh and tau_phl are different, the propagation delay tau_p is the average of the two. 

 

Let us consider the input signal of a gate, an inverter for example, and its corresponding output signal. 

To define the propagation delay we need to consider the point where the curve reaches the 50% of the 

swing both for the input and the output signal. The time interval between these two points is the 

propagation delay. This 50% of the swing is not chosen randomly. It has a meaning since the threshold 

is usually chosen to be in the middle of the supply range, or in other words at VDD/2, in order to 

maximize the noise margins (thus, crossing 50% of the swing means crossing the threshold causing the 

inverter to toggle). 

 

We will distinguish between a propagation delay from low to high (referring to the output transition), 

and from high to low. Thus, we have τpLH andτpHL, respectively. The arithmetic mean between these 

two values is the so called “propagation delay” of a gate. 

Other two key times are the rise and the fall time, which are defined as the time interval between the 10% 

and the 90% of the swing. 

 

A first order RC network 
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In digital electronics a transistor is always modelled as the combination of a resistance and a capacitor. 

For steady behaviour we have a resistance, in the case of transient we model it as a capacitor. 

If we apply a step in input of an inverter, the output will have an exponential transition, and to assess the 

propagation delay we need to assess the cross of 50% of the Vdd, that is nothing else than 0.69*RC. 

 

FAN-OUT AND FAN-IN 

If we consider a circuit with a propagation delay of tau_p from input to output, the maximum operating 

frequency will be fmax = 1/tau_p. Knowing tau_p, the maximum bit rate we can feed to the digital circuit 

is 1/period of one bit, and the period of the bit is tau_p, so the bit rate is fmax. 

 

Fan-out will be indicated as f and it is the load capacitance divided by the gate capacitance: f = Cl/Cg, 

so it is the ratio of capacitances. 

Fan-in is the number of inputs. 

 

In order to define the ideal digital inverter, let’s introduce the concepts of fan-out and fan-in. 

The fan-out is the number of ports connected to the output. Typically, it’s defined as the ratio between 

the capacitance connected to the output node (due to the external load, the so-called extrinsic 

capacitance), and the input capacitance of the gate. We will come back to this definition in the next 

lessons. 

 

The fan-in is the number of input terminals. The inverter has a fan-in of 1, whereas if we consider a 2-

input NAND gate, its fan-in is 2. The gates with high fan-in tend to be more complex causing both static 

and dynamic performance to worsen. 

 

THE IDEAL INVERTER 

The one in the image (red) is the ideal characteristic 

of an inverter. In fact, I have the largest possible 

swing (difference between Voh and Vol), that is 

Vdd, Moreover, the switching threshold is exactly 

half Vdd. It is important to have it in the middle 

because of noise margins. 

NMH = Voh – Vih 

NML = Vil – Vol 

In this case Vil = Vih= Vdd/2, so both the noise 

margins will be Vdd/2. 

 

If there is noise on the ground, do we prefer to maximize NMH or NML? NML, so maybe we can change 

the position of the switching threshold, greater than Vdd/2. So we need to custom design the inverter 

and not using libraries, which are putting the threshold in the middle. 
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Moreover, the ideal inverter has an input infinite impedance and 0 output impedance (in reality 100 to 

10k). In reality we have a capacitive impedance in the case of an inverter. 

 

VTC of an inverter 

In the image we have a very bad inverter and we need to assess all the static parameters. The switching 

threshold is easy to be found, we need the bisector → 1.64V. PS is supposed to be between 5V and ground. 

The other parameters we can find are the Vil and Vih, drawing the slope of -1. 

Moreover, the gain in the transition region is not so high, more or less -1.5. 

 

To compute Voh and Vol we cannot use the PS value, nor the recursive formula. So we make a guess. I 

suppose that Voh’ = Vdd and I measure a first estimate of Vol’, 0.3V. This estimate is put at the input of 

the inverter and assess Voh’’ = 3.7V. Now we use Voh’’ at the input and estimate Vol’’. in the end, Voh 

= 3.5V. 

 

This inverter is very bad because the swing is not equal to the PS, the switching threshold is not in the 

middle but very low, and this results in two different noise margins, with the NML that is very small. 

 

This slide shows the VTC characteristic of a real inverter. In truth, this is an old inverter, but it can be 

considered as an example. 

 

On this characteristic we can evaluate all the parameters of interests: VM, VOH, VOL, VIH and VIL. 

Starting from the threshold voltage, this parameter can be evaluated designing the bisector of the first 

quadrant. VM is equal to 1.64V. Now, we can sketch the two voltages VIL and VIH remembering that 

they correspond to the point of the VTC having slope equal to -1. Thus, VIL=0.66V and VIH=2.35V. 
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Graphically we can derive also VOH and VOL, which are equal to 3.5V and 0.45V respectively. These 

two values can be computed by means of a recursive analysis, starting from an initial guess of VOL=0.3V, 

for example. At this voltage it corresponds VOH=3.7V. Then, we can use this voltage to improve the 

estimate of VOL, obtaining VOL=0.45V. Since the characteristic is rather flat in this region, this estimate 

is already correct. Finally, from VOL=0.45V we obtain VOH=3.5V. 

 

The two noise margins result: NMH=VOH-VIH=1.15V and NML=VIL-VOL=0.21V. 

 

Obviously, this is not a good inverter for what concerns the static characteristic. The threshold is not at 

VDD/2 and the two noise margins are not symmetrical. The NMH is large, whereas the NML is very 

narrow. 

 

POWER CONSUMPTION 

The power consumption is always related to the Power supply generator, it is the power wasted by it. It 

is the power delivered to the circuit by the power supply generator. 

 

Instantaneous power 

Product of the Vdd value and the current. 

 

Peak power 

We consider the maximum current delivered by the power supply. 

 

Average power 

What matters is the average power, which establishes the heat to be removed- 

It is what counts in digital electronics. It sets the duration of the battery. It is the average power wasted 

by the power supply generator. 

It is the integral over a period T and we need to evaluate the average current drawn by the power supply. 

 

This average power is defined as the average product between power supply and current. Since the power 

supply is supposed to remain constant, the average power consumption can be estimated as the product 

between power supply voltage and the average current drawn by the supply, evaluated here as the integral 

over a period T (normalized to T) of the supply current. We can distinguish between static and dynamic 

power consumption. 

 

The former is due to the current that flows from positive rail to negative rail (due to a leakage for 

example), the latter is the power associated to a commutation and it’s the main contribution to the overall 

power being proportional to the operating frequency. This is mainly due to the current flowing from the 

supply to charge the output capacitance of the gates. 
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Let’s suppose to deal with an inverter featuring a high input. Now, if the input is pulled down, the output 

is pulled up, thus the output capacitance of the inverter is charged to VDD. This causes a current to flow 

from power supply toward the capacitance, thus causing a power consumption. Conversely, if the input 

is driven high, the output capacitance is discharged to ground, but no current is drawn from the power 

supply, which does not waste power. 

 

Let’s consider an inverter and that there is no current drawn from the PS if the circuit is steady. If we 

consider 0V at the input, the nMOS is off, so there is no current that can be drawn, because the pMOS is 

in series with an open circuit. The same is true with a logic 1 at the input. 

There is still however the leakage current, but it is negligible (pA). There is current only during a transition 

at the input, from 0 to Vdd (pull up) or from Vdd to 0 (pull down). 

 

Input Pull-down 

From logical 1 to logical 0. At the output I should have a transition in the opposite way, from 0V to Vdd. 

Let’s try to assess the energy for the 0 → 1 transition. It is the energy spent by the power supply generator 

to perform the transition at the output, in fact we are dealing with the output. 

 

In fact, at the output we have a capacitor Cl. The transition correspond to a current drawn from the PS. 

 

During the pull up transition of the output it is the pMOS that comes into play. The pMOS is connected 

to a capacitor Cl across which at t = 0 we have 0V. The current across the pMOS charges the capacitor. 

I want to asses the energy spend by the PS generator for this charge event. 

 

The transistor can be represented as a resistor R, and I don’t care about its value, because I care about 

the capacitance. E_0→1 is nothing more than the integral of the power; since I have just this event, I can 

consider the integral of the instantaneous power P(t) in dt. 

The power is the one of the PS generator, that is Vdd, and the current is i(t) in the pMOS. Vdd can then 

be taken out of the integral and we have just the integral of the current. i(t) flows in the capacitor, and it 

is Cl * dVout/dt. 
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Now dt can be simplified and we change the extremes of the integral because dVout goes from 0 to Vdd. 

The energy depends only on the PS voltage and the capacitor we are charging, not on R. 

 

Moreover, the capacitor is charging, so there is energy in it. The energy in the capacitor is Ec and the 

power is Pc. I want to assess the energy absorbed and stored in the capacitor. 

 

The energy spent by the PS is in the Cl*Vdd^2 term, and half is stored in the capacitor. The other half? 

It is dissipated in the resistance in heat, but it is independent on the resistance. 

 

Input Pull-up 

Now the nMOS transistor is on. Now the current of the PS generator is 0 because there is a pull down at 

the output, so there is no current provided from the PS. 

At the beginning, the Cl is charged to Vdd and it discharged. The energy in the capacitor is dissipated in 

the resistance R of the model circuit through heat. Ec has the same value as the previous case. 

 

If we suppose to have a signal that is a series of square waves (alternation between 0 and 1), which is the 

average power wasted by the inverter? The PS generator wastes power only if it has to charge the 

capacitor, not if it has to discharge it. So only if we have a transition E_0→1. 

The power is the energy multiplied by the frequency with which the transition occurs, e.g. f_0→1, which 

is called pull up frequency. It is not the frequency of the square wave, but the average frequency with 

which we charge the capacitor. And the pull up frequency is somehow proportional to the clock 

frequency. 

The PS spends energy only for the pull up, because in the pull down the charge goes directly into ground 

 

This is the formula for the dynamic power consumption Pd. The heat dissipated during the transition is 

independent on the resistance value. 
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THE MOSFET TRANSISTOR 
 

With MOSFET we can implement very good switches. In an analog circuit I would use a BJT, which is  

a better current generator (larger gain, faster and bigger output resistance). 

In digital electronics we care about switches, not current generators, but we need switches to connect a 

load to Vdd or to ground. MSOFET can be turned on and off very easily, so they are good. Moreover, in 

CMOS, pMOS and nMOS are good as well, even if typically up*C’ox < un*C’ox. 

Moreover, we can have no static power consumption with MOSFET wrt BJT. They are also smaller and 

their production process is simpler, so we need fewer masks. 

PURSUING A GOOD SWITCH 

We want a device that performs as a switch in series with a resistance. in the case of a MOS, if Vgs > Vt 

the device closes. The short circuit is in reality a very small resistance. we want switches that, once closed, 

connect the Vout either to Vdd or ground. 

 

THE MOS TRANSISTOR 

The one in the image is a nMOS transistor. We have 

the two n+ regions diffused with the self-aligned 

process, the red one is SiO2 and then we have above 

the Polysilicon, which acts as the gate. Everything is 

implemented on a p substrate, which is slightly doped. 

 

There is something missing, because we need to 

implement a p+ region to bias also the bulk. It is 

biased to the lowest voltage that we have available, 

that in our case is ground. The substrate is in common 

to all the devices and we want the pn junctions reverse biased, so the only way is to have the bulk to 

ground. So the MOSFET is a 4 terminal device. 
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As for the pMOS transistor, it is the same but the main 

difference is that the substrate is still p doped, but in the p 

substrate we implement a n well region, lightly doped with 

phosphorus. In the n well we implement two p+ wells for 

source and drain. Then the rest is the same but changing the 

doping. 

In the n well we also implement a n+ diffused region to bias 

the n well at the most positive power supply Vdd to have a 

reverse bias junction. 

Furthermore, we need to add also a p+ region to ground for 

the substrate. 

 

 

Symbols 

The body of the transistor is represented as a diode because if we cut and we make a section of the 

transistor, we have something like a diode (because of charge distribution). If the bulk is not represented 

it is supposed as connected to ground (for the nMOS, Vdd for the pMOS). 

 

In digital electronic we never indicate where the source is, unless we want to investigate the transients. 

In all the other cases we have the symbols as in the image, without the source indicated. This because in 

digital electronic, if the signal is steady, there is no current, while in analog electronic we have the bias 

current and so we need to indicate the source. Now we care about switches. 

The dot on the gate of the pMOS means ‘active low’, that is the fact that the mosfet is active with low 

voltages on the gate. 
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CROSS SECTION OF AN IC 

 

We have the Silicon layer where we implement the n+ and p+ wells. The body terminal is not 

represented, so we should add a p+ region connected to ground and a n+ region connected to Vdd. 

The metal1, metal2, metal3 etc. are interconnections (we are in section). The white regions are SiO2. The 

light grey portions are vias, with which we interconnect contacts at different level of metalization. 

The first via in contact with the silicon (n+ or p+ region) is called contact, not via. 

 

Furthermore, also analog passive devices are represented (x). It is a capacitor. The other one is POLY1-

POLY2 capacitor. 

 

THRESHOLD VOLTAGE 

If Vg = 0 we create a depletion layer below the gate, positive charges are removed because holes are 

attracted by the grounded bulk and the depletion region has a negative fixed charge. It is a fixed charge. 

If I apply a voltage at the drain greater than 0, nothing happens because there is no free charge below the 

SiO2. 

 

Now Vg > 0. At a certain point I create free electrons below the gate that come from the source and the 

drain. These are free charges, so if Vds > 0 the electrons can move from the source to the drain and we 

have a current. The threshold is the voltage to apply to the gate to have a density of e- under the gate 

equal to the original concentration of ions, so that we invert the channel. So we create an inversion layer 

equal to the original concentration of ions of acceptors in the substrate. 

 

x 
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The nominal threshold Vto is x. The nMOS transistor is a 4-terminal device and if the source is not at 

ground and we have a body to source voltage, we have the body effect and Vt increases. Vt increases as 

much as we increase the Vsb, according to y. gamma is the body effect coefficient that in our case is 

0.4V^(1/2). -2*phi_f = 0.6V. 

Since Vsb, Vt increases always wrt Vto. In digital electronics we want a small threshold to have a good 

short circuit, but if we have a small threshold it is difficult to turn off fastly the device (the smaller the 

threshold voltage, the larger the leakage current). 

 

THE BODY EFFECT 

On the right it is indicated the reference technology, with nominal Vdd = 2.5V. When Vsb is equal to 0, 

Vt = Vto. Increasing Vsb, the Vt increases. 

Why do I have to have the source at a voltage larger than ground? In an AND gate we 

have nMOS transistor in series. The bottom one has the source to ground, but the others 

above not, and so I have the body effect. During the transient there is a current in the 

transistor, and we have the body effect, which reduces the driving capability of the 

transistor. 

 

Let’s consider a nMOS transistor connected to a capacitor which is to Vdd. If the voltage on the gate of 

the nMOS reaches Vdd, Vgs > Vt, the transistor is on and we have a current that discharges the capacitor. 

At the end of the transient, Vout = 0. This because in DC at steady state the capacitor is open, so no 

x 

y 
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current flows, so the transistor is ohmic and 0V across drain and source. Hence the transistor can pull the 

node to ground. In the opposite situation we consider a capacitor that is charged up to Vdd and a pMOS. 

 

Let’s see what happens if we use a nMOS to perform a pull up and a pMOS for the pull down. Let’s start 

from the former. What happens is that once I have Vdd on the gate we have a transient, so we need to 

indicate which is the terminal that behaves as a source, and it is the one connected to the capacitor. 

Current starts to flow from Vdd to ground (always). The voltage on the capacitor increases. When we 

reach Vdd - Vt the current is 0. This is why the nMOS transistor is not used for pull-up, because we want 

the largest possible swing to have the largest noise margin. 

But the voltage won’t be 2.07V because Vt is not 0.43V, which is the nominal threshold voltage, but I 

have to consider the body effect, so Vt != Vto = 0.43V, because the source voltage changes. 

Since the Vsb is Vdd – Vt, I’m stuck and I need an iterative procedure. I start with Vt = 0.43V and Vsb = 

2.07V and get a second estimate of Vt. 

Then I go on. 

I continue with the iterations and the final point that the output voltage reaches, after a reasonably time, 

1.764V, which is different from the 2.5V that I can use if I would have used a pMOS for the pull-up. 

 

The same reasoning can be done with the pMOS for pull-down. 

 

Performing the calculations, we get Vout = 0.7V more or less. 
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TRANSISTOR IN OHMIC (LINEAR) REGION 

We have free electrons both at the source and drain side. This means that the gate to drain voltage is 

grater than Vt. 

 

PINCH-OFF SATURATION 

The pinch off region of the transistor is met when there are no more free electrons at the drain side. This 

doesn’t mean that the current is 0. 

 

The transistor has to be on to be in pinch off and then Vgd < Vt. The voltage where the channel is pinched 

off, across the channel, is Vov. In the pinch off region, the current depends quadratically on the overdrive 

voltage. 

 

The current depends quadratically on the Vov because it is proportional to the charge across the channel 

Q and to the velocity of the carriers along the channel. The charge is a density of charge Q’, which is 

proportional to C’ox*(Vgs – Vt); the electrons move from source to drain and the velocity is proportional 

to the mobility and the electric field across the channel. The electric field across the channel is the voltage 

drop across the channel divided by the length of the channel. But the voltage difference across the channel 

is Vov. If I put them together I have in both a dependance on Vov, so finally the dependance is quadratic. 

 

The final characteristic of a transistor is the following. 

The parabola defines the ohmic region and the pinch off region. The parabola corresponds to the locus 

of point for which we enter the pinch off region, which is Vgs – Vt. It is the minimum Vds for which we 

have the pinch off region. 
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In the linear region we have a strong dependance on Vds, while in the saturation region we have a small 

dependance on Vds because of the Early effect (channel modulation effect, due to the fact that the pinch 

off point moves), so the current slightly increases. 

 

Equations 

 

A region that is missing is the cut-off region, where Vgs < Vt and the transistor is off, Ids = 0. For the 

saturation formula we use lambda that is 1/Va, where Va is the Early voltage. 

We can notice that in linear region, if we neglect the Vds^2 term, we have the equation of a resistance, 

and we can get the on resistance: r_on = 1/(uC’ox(W/L)*Vov). 

uC’ox is called process transconductance. 

 

Let’s neglect the quadratic term in linear region. Even if Vgs > Vt, the current can still be equal to zero 

even if the transistor is on. This happens if Vds = 0, so we are working in point x of the previous image. 

This is the working point of transistor in digital circuits. So this condition occurs either if the transistor is 

off or if it is on but Vds = 0. 

 

Carrier velocity saturation 

So far we have considered the following equation.  
 

The channel can be ohmic, pinched off or cut off. Moreover, the fact that the 

velocity is proportional to the electric field is valid for any technology but now we 

might have carrier velocity saturation. In fact, if we increase the E across a 

x 
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semiconductor, when we reach a critical electric field the velocity saturates, we reach a plateau and it 

saturates to the value in the image. 

 

This is the reason for which current becomes linear with the overdrive voltage (no more squared in 

saturation) and this is what happens in modern technology 

 

Drain current in velocity saturation region 

 

I consider INTEL 0.25 um CMOS technology with W/L = 10u/10u and a device with the same aspect 

ratio, but 0.2u/0.2u. 

 

We expect to have the same behaviour in terms of characteristic, because the current depends on the 

aspect ratio, but we have the short channel effects in the second case, so we have velocity saturation (blue 

curve). 

 

If this effect comes into play, the current has the formula in the right side of the equation x. Vdsat is the 

voltage to apply across the channel to have the short channel effect. It is a number for each technology, 

for the 0.25um it is 0.63V. If we apply this voltage across the channel the velocity saturates. 

 

Let’s consider the channel (channel = having free electrons that can conduct a current) of a mosfet. We 

have three possibilities: cut-off, linear and pinched off. 

The velocity saturation occurs at the current level, not at the channel level. 

What about the voltage across the channel delta_V? 

 

x 
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In the linear region it is established by Vds. In the pinched off condition it is Vov = Vgs – Vt. So what 

counts to have saturation of the velocity of the carriers is that the corresponding delta_V divided by the 

length is equal to the critical electric field. 

 

Hence if delta_V > Ec * L, we have velocity saturation, and Ec*L is a number. This also means that 

delta_V is proportional to the length. The higher the length, the lower the probability the velocity 

saturation occurs for high voltages. 

 

The delta_V that makes the velocity saturate is Vdsat = 0.63V. 

 

The Vdsat is the voltage that, applied to the drain, creates an electrical field so large, equal to the critical 

electrical field Ec (typically 2V/um) to saturate the velocity of the carriers. This explains the behaviour 

of the current that doesn’t depend on the Vds voltage anymore. More or less, the electrical field in the 

channel is Vds/L. 

 

Difference between long channel device and short channel device 

In the linear or ohmic region I have a channel both on the source and drain (top left image). In the 

saturation region the channel is present only at the source side, I have the pinch-off at the drain. In this 

latter case, Vds > Vov. 

 

Now let’s plot Ids vs Vds for a long channel device (L = 10um) and for the short one (L = 0.25um). In 

the long channel device I have the square ohm law. 
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For the short channel, the Ec is more or less 2.5V/um, and if L = 0.25um, V = 0.63V. As soon as we 

apply this voltage across the channel (at the drain), the velocity of the carrier saturates and there is no 

more dependence of Vds. 

 

If we consider the blue curve, which is the behaviour of the channel? At the beginning it’s linear, we are 

in the ohmic region, and the current is the one of an ohmic transistor. Then, immediately after Vdsat, the 

channel is again linear. The channel becomes pinched off at the same pinch off point of the long channel 

transistor. 

In the case of the 10 um there is no velocity saturation because the Ec is the same, but the L is larger, so 

the voltage at which we reach Vdsat is 25V, which is not available, we cannot create it. 

 

Let’s now change the parameter Vgs. Everything else is kept the same, and Vgs = 1V (small Vgs). The 

overdrive voltage in this case, being the threshold set to Vt = 0.43V, it is 1V-0.43V = 0.57V. 

In this case there is not a difference between the 10um case and the 0.25um case. 

At 0.57 V we enter the pinch off region for the 10um. 

 

From this point on, the voltage across the channel, considering a very rough approximation, doesn’t 

change. But 0.57V is smaller than 0.63V, so it cannot create a saturation of the carriers, so I’m not entering 

the velocity saturation, because Vdsat > Vov. 

 

So for small Vov voltages, the velocity saturation doesn’t occur. It happens or small length and large 

voltages Vds. 

 

Characteristic curves 

The W/L is the same for the two transistors, and these are the results of the simulations. In the short 

channel case, the characteristics are different because the scales are different. For Vgs = 1V the curve is 

the same for the long channel, but then it changes for higher values of Vgs. 

 

Three remarks: 

1. Once we consider the velocity saturation, the available current is much smaller. So once they 

behave as current generators, transistors affected by velocity saturation can draw smaller current 
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→ less available current. With smaller current the propagation delay of the inverter increases 

because it takes more time to charge the parasitic capacitance 

2. In the velocity saturation case it seems that the transistor behaves like a current generator for a 

larger region, the ohmic region for the current (not channel) is much smaller than in the case of 

the long channel → the velocity saturation transistor works for most of the Vds voltages in the 

current generator state, so current flat with respect to Vds. 

3. The Early voltage is proportional to the length; in our model is the lambda parameter that is more 

or less 0 in the long channel. In the short channel the slope is higher, so the channel length 

modulation effect takes place even if we are saturating the velocity of the carriers. 

 

Trans-characteristic Ids vs Vgs 

 

It is current vs Vgs for Vds = Vdd = 2.5V. On the left we have the classical square law model, where the 

current is nihil up to the point Vgs = Vt = 0.43V. Then the current is the pinch off current; if on, the 

channel is always pinched off because Vds < Vdsat. 

For the short channel I have still no current below threshold, and then two regions. One is the velocity 

saturation, but for small Vgs we have the previously described condition, so we cannot create an electrical 

field in the channel to have velocity saturation, so we have the square law. In both regions, however, the 

channel is always pinched off. More or less for Vgs = 1.06V we have the boundary between velocity 

saturation and not. 

 

SHORT CHANNEL MOSFET OPERATIVE REGIONS 

1. The Ids current is approximately 0, there is still a leakage 

current however. In the other three regions the device is on, 

because Vgs > Vt. 

2. Vds < Vgs – Vt. This means that the channel is ohmic (or linear). 

If we suppose that the Vds < Vdsat = 0.63V, we are not 

saturating the carriers, so the current is ohmic. 

3. Vgs – Vt < Vds means that the channel is pinched off. Moreover, 

if Vgs – Vt = Vov < Vdsat, so there is still no saturation of the 

carriers, so the current in this case is pinched off. 

4. The channel can be ohmic or pinched off, I don’t care. What 

counts for the current is that Vdsat is smaller than both Vov and 

Vds, so we have velocity saturation. 
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UNIFIED MODEL FOR MANUAL ANALYSIS 

If Vgs – Vt > 0 the transistor is on. 

To explain the concept of Vmin, we have to resort to the previous image. The operating region of the 

transistor in terms of current depends on which voltage is the smallest among Vds and Vdsat. The smallest 

establishes the operating region in terms of current. 

 

Let’s suppose, for instance, that Vgs = 1V, so that Vov = 0.57V. Vds = 2.5V and Vdsat is a number, 

0.63V. The current will be the one of the pinched off transistor with Vmin = Vov (if we neglect the channel 

modulation effect in the last paranthesis).  

 

If instead Vds = 0.1V, the current has the expression in the ohmic region. 

 

Now Vdsat is the smallest. We get the following. 

 

Simulation of short channel MOSFET 

For small Vov, that is Vgs < Vt + Vdsat = 1.06V, we have the classical square law model and for the 

current we are in pinch off. Above it we have the velocity saturation. 

 

So when Vdsat is the smallest voltage among the three, we are in velocity saturation region, and it is a 

very large area. 
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In the upper table we have the parameters that will be used during lecture. 

 

Model – simulation comparison 

Red curves are the simulations, which are very similar to the measurements. The dots are the results of 

the model. The model is very accurate in pinch off saturation and in velocity saturation region. The 

discrepancy is at the boundary between linear and velocity saturation for large Vgs. 

 

I don’t care about this discrepancy because in static conditions (DC) the transistor is either off or ohmic 

with current equal to 0. The problem is during the transient. If we consider the pull down transient, 

performed by the nMOS transistor, from the propagation delay stand point, the range I have to consider 

is not from Vdd to ground, but it is smaller, from Vdd to Vdd/2 in terms of Vds (definition of the 

propagation delay, half the supply range). In this range there is no discrepancy, the dots are overlapped 

with the red characteristics and I’m ok. 

 

For the pull-up, also this is the region of interest (Vdd to Vdd/2 in terms of absolute velua of Vds), so we 

are good. 
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Reference 0.25 um CMOS technology 

 

We should consider the absolute value in the tables and keep the same functional from. 

 

SUBTHRESHOLD CONDUCTION 

We are in log scale and under threshold. For Vgs < Vt, the current is much smaller than in the linear 

region, pA. We know that for Vgs < Vt we have an exponential dependency of the current according to 

x. 

 

n = 1.5 in general. The only thing that counts is that, once we switch off a transistor, the current is not 

properly nihil, it is in the order of pA. With billion of inverters, the overall current cannot be considered 

negligible. The current is exactly 0 only if Vds = 0. 

 

EQUIVALENT RESISTANCE 

I want to assess the propagation delay as tau_p = ln(2)*Req*C. So the transistor must be modelled with 

resistances. 

 

In the image I apply a low to high transition to an inverter, so the pMOS is 

off (not represented in the image) and the nMOS is on. The voltage was 

Vdd at the beginning, and now I want the high to low propagation delay. 

Vout goes from Vdd to 0 at the end of the day, but we care, in digital 

electronic, from Vdd to Vdd/2. 

 

x 
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So the Vgs of the transistor is fixed to Vdd, and for large Vgs we have the curve on the right of the next 

image. 

 

I’m interested in the region x from Vdd/2 to Vdd. This is the current drawn by the transistor once I 

discharge the capacitance. 

I want to express the behaviour of the transistor along the transient considering a resistor. Current y is 

the initial current of the transient, Ids_i. The voltage in y is Vdd, so the ratio is R_i, the initial resistance. 

Then I move in the final point z; I will have a final resistance R_f. 

 

Then I compute the equivalent resistance as the arithmetic average between R_i and R_f: Req = (R_f + 

R_i)/2. 

 

In reality, I should have computed the equivalent resistance with an integral. 

 

The expression of the current I have to consider is the one with the modulation voltage. The first part is 

constant, Idsat, the thing that changes is the part with the channel modulation effect. 

 

The formula must not be known, the important concept is the averaging of the resistance. Moreover, the 

equivalent resistance depends on the PS voltage and Idsat. And Idsat depends on the aspect ratio, so to 

decrease the equivalent resistance of a transistor we can change the aspect ratio increasing W. 

 

To be honest, Req depends at the denominator to Vdd – Vt – Vdsat/2 (in the Idsat dependance). The 

term Vt + Vdsat/2 is called effective threshold Vte. In our technology, Vte = 0.43 + 0.63/2 = 0.7V. 

So why not changing Vdd? If I decrease it, at a certain point I have a steep increase of Req as in the next 

image. This happens because the denominator goes to 0. 

x 

y z 
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Similarly, applying a large Vdd is not useful, even if the Req decreases, because we create breakdown in 

the transistor and we destroy the transistor. In fact, every technology has a maximum Vdd above which 

we cannot go. If we decrease L of the transistor, the Vdd allowed decreases. 

 

 

Hence to decrease the resistance we can act only on one parameter, the W. 

 

Results 

nMOS and pMOS transistors have an equivalent resistance of 13k and 31k respectively, for W/L = 1. 

The difference arises because we have the term un*C’ox, the process transconductance. In fact, the one 

of the nMOS is more or less three times larger than the one of the pMOS. 

 

ASSESSING THE PROPAGATION DELAY 

The transistor in the image is not feasible, because the aspect ratio is one, it can be done only on paper. 

Typically, the minimum width we can design is Wmin = 1.5*Lmin at least. 

 

For this transistor we have a resistance of 13k and I want to assess the propagation delay, assuming it is 

the pull down transistor of an inverter. The C = 2fF (capacitance associated to the minimum size 

inverter). 

The voltage at the gate experiences a low to high transition, the transistor turns on and I have a discharge 

current. The propagation delay of this circuit is computed on the first part of the transient, from Vdd to 

Vdd/2, and it is an RC transient. The tau_p is the one in the image. 

 

Is this the only way to assess the delay? 

No, we can do this because it is a very simple circuit and we know that the transistor is working in velocity 

saturation from Vdd to Vdd/2. Thus Ids = Idsat(1 + lamba*Vds). 
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Then I have the capacitor, whose relationship is well known (image). Then once I have this expression I 

can assess the propagation delay performing the integral. With this exact analysis we get a similar result 

with respect to the model. 

 

 

MOS CAPACITANCES DYNAMIC BEHAVIOUR 

The capacitances that come into play in a transistors are: 

For the 2, the intrinsic capacitances is not a correct term, it refers to another thing, because the intrinsic 

capacitance is the parasitic capacitance of a digital gate. 

3 occurs because to isolate the transistor we have to reverse bias the diodes. Since we have diodes to 

reverse bias, a diode in a reverse bias region means a depletion capacitance. 

 

TRANSISTOR MODEL WITH PARASITICS 

Bulk is ground for nMOS and Vdd for pMOS. We want to estimate the capacitance at the input and at 

the output of the inverter. In fact, the inverter may drive another gate, e.g. another inverter. If I’m 

interested in assessing the propagation delay of the inverter, I know that I can model the transistor as a 

resistor, but I need to assess also the parasitics contributions, Cint and Cext. 

x 



40 
 

During the transient, node x corresponds to the drain of the transistor (either for the pull up or the pull 

down), so at the output we have the drain of the transistors during transient (during transient the transistor 

are current generators, so one terminal behaves as a source and the other as a drain). 

 

Cdb and Csb are the parasitic capacitances related to the reverse bias diodes. 

 

Overlap capacitances (always fixed, due to production process) 

 

I’m considering an nMOS transistor. The transistor is implemented with the self-gate aligned technology 

(Federico Faggin). Firstly we implement the gate and then the source and drain regions. 

We have overlap capacitances with the dielectric SiO2 in the middle. It estimated as the specific 

capacitance per unit area (C’ox = epsilon_ox/t_ox = epsilon_r*epsilon0/t_ox), a well-known number 

depending on the technology. Epsilon_ox = 1/3 * epsilon_Si with epsilon_Si = 1 pF/cm. In the end, 

epsilon_ox = 1/3 pF/cm = 33 aF/um, leading to a C’ox = 6 fF/um^2. 

 

Then this C’ox is multiplied by the overlap region, which depends on the technology. 

Typically, x_d = 1/5 * Lmin = 0.05 um in our technology. 

The other dimension to determine the overlap area is the width of the transistor, the value the designer 

can change → if we increase W to decrease the resistance, we are increasing the parasitic capacitance. 

 

NB: in pinch off region there is no channel contribution and the only contribution that survives is the 

overlap contribution. 

 

Channel capacitances 

We have a gate and the channel below it that can be: cut-off (no channel), linear, pinch off saturation. 
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Cut off region (// means in series) 

In the cut off region, since there is no channel it doesn’t mean we have an open circuit, because in the 

region under the gate I have a depletion layer, so fixed negative charge, because the holes are attracted 

by the p+ substrate contact, so negative fixed ions remain (with fixed charges I cannot have a current). 

Hence I have the series of two capacitances, the oxide capacitance and the depletion layer capacitance, 

which is between the gate and bulk. 

 

The other contributions Cgs and Cgs are zero in the cut off region. In reality we still have the overlap 

contribution that generates a capacitance, but we are speaking about channel contributions, so no 

contribution from Cgs and Cgd. 

 

Linear region 

Gate is well above threshold but Vds = 0, for instance. 

In this case the channel is inverted, I have an inversion layer of free electrons. The overall oxide 

capacitance can be split in two contributions, one toward the source and the other toward the drain. Cox 

= C’ox*W*L (L is the effective length, excluding the overlap regions). 

The two contributions are equal because the channel is formed in mostly equal measure on both sides. 

 

Pinchoff saturation 

The overall capacitance is toward the source, but between gate and source there is only a fraction of the 

oxide capacitance, 2/3 of it. No contribution to the drain and to the bulk. 

 

The overall capacitances can be visualized in the following image. 

On the left we have all the contributions in the case Vds = 0V, spanning the value of Vgs. 

 

We have a contribution from gate to bulk only in the left part; in this part I’m applying a negative voltage 

to the gate, so I’m attracting free holes and an accumulation region. 

Where we have the valley we are in the cut off region. After this region there is no more gate to bulk 

capacitance contribution. 

The red line is the overall capacitance I see from the gate. Apart from the pinch off region, I notice that 

Cg is almost Cox = C’ox*W*L (C’ox = 6 fF/um^2). 

 

In the right plot, instead, I’m considering Vgs – Vt = Vdd and I’m spanning Vds. The ratio between Vds 

and Vgs-Vt is also called ratio of saturation. If equal to 0 we are in ohmic, if 1 we are in pinchoff 

saturation, so from left to right we move from ohmic to pinchoff saturation. 

 

In ohmic condition the overall oxide capacitance is split in two equal contributions. Then one of the two 

increases, and the other one goes to 0. The overall capacitance we see from the gate is the red one. It is 

not properly constant but almost 2/3*Cox. 
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So whatever the operating region, from the gate we see almost the gate capacitance Cox. 

 

Recap – Behaviour of a diode 

A pn junction has a capacitance that depends on the applied voltage according to the formula. Firstly, it 

is proportional to the area of contact of the junction. Then on the specific parameter per unit area. 

The built in potential phi is 0.9V, and m = 0.5. 

 

This capacitance depends mostly on the depletion region we create at the boundary and inversely related 

to the direct voltage we apply. 

X is the region of reverse bias, where it is biased the diode of the transistor. 

 

Diffusion capacitance 

Let’s consider the diffusion region corresponding either source or the drain, it is the same, because the 

device is symmetric. 

The depth xj is 0.15um, quite similar to the length of the channel, non negligible. 

 

The width is the most important parameter we can change. The substrate is p doped, then we have a n+ 

region and the diode is a 3d diode. So for sure we have a bottom area contribution, but then we have also 

the sidewalls contribution for each of the 3 sides, but not on the one on the channel side because we have 

a ‘shortcircuit’ because the channel exists. 

 

The first term is the bottom area contribution. C’j is the specific capacitance per unit area, and the area 

of the bottom side is W*Ls, with Ls that is fixed by technology and it is 0.625 um. 

x 
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Then we have the sidewall contributions; xj = 0.12 um. 

 

EQUIVALENT CAPACITANCE ALONG A TRANSISTOR 

The capacitances seen are voltage dependent, so if we experience a transient, the capacitances vary along 

the transient. Hence we have to consider that the capacitance is not constant. 

 

To address the variation of the capacitance we could use the first approach of the image. A capacitance 

is a variation of charge wrt a variation of voltage. The variation of charge, divided by the voltage 

variation, means that I have to perform an integral. But this is a very complex approach, because we have 

to solve an integral. 

 

The other approach is a simplified one. The capacitance varies along the transient from a value C1 to a 

value C2, and I don’t know how it varies. So I do the average. It works if the change is not so abrupt. 

 

The last possibility is to consider the maximum value of the capacitance if we have it varying during the 

transient. In fact, the worst case approximation is always ok. This simplifies a lot the analysis. 

 

Capacitive device model 

Let’s consider the maximum values. Gate-channel means that, from the gate, in terms of channel 

capacitance I see three regions, source, bulk and drain. I can say that the maximum capacitance is the 

oxide capacitance. 

 

Then the gate overlap capacitance is a fixed geometric capacitance. Cov = C’ox*x_d = 0.3 fF/um. 

 

Then we have the junction capacitance, whose maximum value is for an applied voltage equal to 0V (if 

I look at the Cj formula of the diode). 

The only parameter we can change is W. 
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Gate and drain capacitances 

Let’s try to assess more quantitatively the gate and drain capacitances. In a nMOS transistor, from the 

gate we see the overall oxide capacitance, which is the channel capacitance and then the two overlap 

contributions, one toward the drain and the other one toward the source. 

 

From the drain we see mostly the overlap contribution between gate and drain and, during a transient, 

e.g. from Vdd to Vdd/2, we see the overlap contribution because the channel is pinchoff. So either the 

transistor is off or in pinchoff, from the drain I see the overlap contribution. Then I have also the diode 

contribution, split in bottom area and sidewall contributions. 

 

Let’s try to divide the gate and drain contributions by the width W, so assessing them per unit width. 

 

If we change the technology, these expressions were evaluated for 0.25um technology. Still staying in the 

planar technology, let’s look at C’g and C’d. 

If I move from a 0.25um to 0.18um, also all the other dimensions must decrease, so in the end C’g remains 

constant, because numerator and denominator are scaled equally. 

As for C’d, the first term remains the same; the second one has C’j increasing and Ls decreasing, and also 

C’j,sw remains constant → also C’d remains constant. 

 

Parameter 

The first column is C’ox, the second one C’o. In the end, C’g = C’d = 2 fF/um and they are almost 

constant for most of the technology → C’g and C’d technology independent at first approximation. So 

we see the same specific capacitance at the gate and drain (not the same capacitance). 
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So what’s the benefit of the scaling? 

It is that we can reduce the width and the length and the capacitance decreases (not the specific 

capacitances). In terms of resistance, it is the same (depends on the aspect ratio, and the minimum aspect 

ration is 1.5). So the only parameter that changes with technology scaling is the capacitance → smaller 

capacitance means faster transistors. 
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FC – CMOS INVERTER 
 

Fully complementary CMOS inverter. I want to implement a circuit that is able to invert my logical signal 

at transistor level. 

 

The simplest thing to do is to implement two complementary switches that work with two different 

voltages. 

On the right we have the layout of the FC-CMOS inverter. The light green area is n+, the red is polysilicon 

gate of the nMOS transistor. Connections between drains is done with metal, while the grey squares are 

contacts. 

In this top view there is something missing, that are the substrate contacts and, since the pMOS is 

implemented in a n well region (light blue), I need a n+ contact to bias the n well region to Vdd. 

 

FIRST ORDER DC ANALYSIS 

Let’s apply a static voltage at the input (steady state) and we measure the output after the transient is 

over. 

In this case, if we apply a large enough voltage at the input, the nMOS is on and the pMOS is off. 

Applying Vdd at the input of the inverter, the output is 0V. The pMos is in fact off, and the nMOS is in 

ohmic with Vds = 0 and Ids more or less 0A, because the pMOS is off. 

 

Rn is a real resistance, not an ideal one. 

 

Let’s consider the opposite voltage at the input, so 0V. Same reasoning, Ids = 0A in the pMOS because 

the nMOS is off. Vds = 0V and so Vout = Vdd. 
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The resistances Rn and Rp have the value in the formula, computed in the ohmic region. 

 

The derivative must be assessed for Vds = 0, and the derivative is nothing else than equal to 1/Ron. 

 

Is there a reason to reduce Ron? 

If we increase W, Ron decreases and we improve the reliability because the output of one inverter is the 

input of another one, so the better the connection to ground or to Vdd, the more improved the digital 

noise, so there is no digital noise able to change the level of the second inverter. So by reducing Ron we 

reduce the transfer function of the digital noise. 

In term of reliabilities the things that matter are: noise margins, Ron, reduced wire parasitic coupling. 

 

STATIC PROPERTIES 

 

Ratioless means that we can sizing the pMOS and the nMOS as we want. What depends on the relative 

sizing is the switching threshold: Vm = f(Wn,Wp), even if in reality it is a function of the aspect ratios. 

 

Moreover, there is no static power consumption because in DC one of the switches is open and there is 

no current drawn from the power supply generator at first approximation. 

 

The FC device belongs to the FC logic family, together e.g. with the pass transistor logic. And all these 

logic belong to the static gate logics; this means that, whatever the state, there is always a low impedance 

(resistance) path to ground or Vdd at steady state. This doesn’t happen in dynamic families, because 

there may be a state where the output is floating. 

This means that the static gate is a very reliable technology. 

 

VOLTAGE TRANSFER CHARACTERISTIC (VTC) 

I want to derive the static VTC of the gate, meaning that I’m plotting the relationship between Vout and 

Vin at steady state, without any transient. 

 

Surprisingly, the pMOS in the image has an aspect ratio of 3, and the nMOS of 1. It is expected because 

of reliability purposes, to have a switching threshold in the middle. 
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Symmetric devices means electrically equivalent, so that they have the same current for the same applied 

voltage. The switching threshold is defined so that if I apply Vm = Vdd/2 at the input I get Vm = Vdd/2 

at the output. 

To build the VTC I have to plot on the same graph the current of the two devices (Idn and Idp) as function 

of Vout for different values of Vin. The curves of the nMOS are the classical Vds vs Ids curves. 

For the pMOS, Vout = Vdd - |Vds|. The current in the pMOS is 0 if Vout = Vdd. 

 

The curve of the nMOS for Vin = 2V and of the pMOS for Vin = 0.5V are very similar because the Vgs 

is approximately the same. 

 

Since we want to evaluate the i/o characteristic, we know that the two transistor share the same current, 

because they are in series, in DC. So I take e.g. Vin = 0V and I take the point where the two current 

characteristics are the same for the two transistors: point A, this is the working point. 

We can repeat this procedure for other input voltages. 

 

Point D corresponds to a characteristic that is not depicted in the image, and it is related to Vdd/2 = 

1.25V. It is shifted leftwards, meaning that the threshold is not in the middle, it is lower. The point D 

corresponds to a Vout = 0.9V. 

 

Now let’s plot the points A, B, C … on the characteristic. For a given Vin, we plot the point of the 

corresponding Vout. 
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The one in the image is the VTC at steady state. We notice a transition region in the middle and the two 

almost flat region at the boundaries → characteristic of an inverter. 

The transition in the middle has a very big small-signal gain (very steep). In point A, B and C the input 

signal is small, the pMOS is well turned on because we have a large Vgs and the pMOS works in ohmic 

region, we have a shortcircuit to Vdd. In this region the pMOS is in ohmic region and the nMOS works 

in saturation region as a current generator, and since the resistance of the pMOS is small, the output is 

connected like to Vdd. 

 

On the other side the opposite happens, so the nMOS is in ohmic (it can be represented with a real small 

resistance) and the pMOS is a current generator. The output is not properly ground, because some current 

flows in the nMOS, but since the resistance is small, the output is approximately 0V. 

 

The particular region is the middle one where we have a steep transition, the output voltage drops to 0 

for a small interval of the input voltage. This means that the small signal gain is very high; if we bias the 

inverter with Vt = 1.22V (threshold voltage from the plot where the bisector intercept the inverter 

characteristic), the output should be 1.22V. If I then apply a small signal, I have an amplification, and 

the gain is the derivative, which is negative, so the output will be the input one amplified. 

 

In order to have a large gain, the two transistor in the transition region must work as current generators 

and so in saturation region, not in ohmic. The current in the pMOS and nMOS transistor is the same. 

 

As a second remark, the sizing of the pMOS with an aspect ratio 3 times bigger than the nMOS has a 

rationale that is that the two devices must be symmetric, i.e. electrically equivalent, they must draw the 

same current for the same Vds and Vgs, so that the two characteristics intersect exactly in the middle for 

a voltage in input equal to the threshold voltage. In order to have the Vt in the middle, the two devices, 

working as current generators (I don’t care if in pinchoff or velocity saturation), must have the same Vgs 

and Vds, so they must be electrically equivalent. 

 

Since in our case we have that the threshold is not in the middle at 1.25V, so what we can do is to increase 

the aspect ratio of the pMOS from 3 to 3.5 so that the characteristic of the pMOS is shifted above and the 

intercept between the two characteristics is in the middle of the PS. 

 

If we size W/L|p = 10, what happens is that the characteristic of the inverter moves rightwards. 

 

The nMOS transistor curves are not changing because the aspect ratio is the same; however, the pMOS 

is larger, so the current it carries for the same Vgs is bigger. 
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Then I have to assess the working points, seeing the intersection points for the same input voltage. 

In this case the threshold voltage is approximately 1.5V. 

 

The threshold voltage is larger because I’ve increased the driving capabilities of the pMOS, and so the 

pMOS and nMOS behave as current generator for higher input voltages. 

 

If e.g. the pMOS was sized with an aspect ratio of 1, the VTC is shifted towards the left, so the two 

transistor are electrically equivalent for a smaller input voltage. To have the same current, we will need 

Vgs,n < Vgs,p to have them behaving as current generators. 

 

Once we have two current generators, Ip must be equal to In for sure because they are in series. If we 

stack two transistors with two different currents one over the other, to have the condition Ip = In satisfied, 

if e.g. Ip > In, the output voltage increases so that the pMOS is pushed in ohmic region and the balance 

stands. So Ip decreases and becomes equal to In (the weakest always wins). 
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This is why we need to size the two transistors to be electrically equivalent to have the threshold in 

the middle. 

 

SWITCHING THRESHOLD 

So the two transistors are working as current generators at the switching threshold. Let’s assume that: 

- They work in velocity saturation region. 

- Neglect the channel modulation effect. 

 

I’m considering the input voltage equal to Vm (threshold voltage) and so also the output will be. k’p is 

u_p*C’ox. We can also call beta the ratio between the aspect ratios. 

Once r is defined, we have a linear equation that can be solved in the unknown Vm. This is derived 

directly from the fact that the two transistors are working as current generators, so I’m equating the two 

currents assuming they work in velocity saturation region (x). 

 

To have Vm = 1.25V, r has to be a value that is r = 1.443. 

But what counts is that the beta factor beta = (W/L)|p / (W/L)|n = 3.5. 

 

A couple of remarks. The expression is used to assess the beta factor that assesses the Vm in the middle, 

but the two transistors are actually working in velocity saturation region? 

We need to refine the analysis. 

Let’s take 3.5 as factor between the aspect ratios. The Vgs,n = 1.25V at threshold, so Vov = 0.82V 

(Vt,most = 0.43V). If so, the transistor is pinched off in the channel and the transistor is in velocity 

saturation because 0.82V > 0.63V which is the saturation voltage. 

For the pMOS, Vov = 0.85V, but Vdsat,p = 1V. The channel is still pinched off but 0.85V is not enough 

to work in velocity saturation, because smaller than 1V. 

 

So I should have written the saturation pinchoff equation for the pMOS. 

 

However, the result is very similar than in the case of velocity saturation, so the approximation is ok. 

 

Another remark. Let’s suppose that Vdsat,p = Vdsat,n and Vtp = Vtn, but the process transconductance 

is different (k’). To have the switching threshold in the middle, r = 1, which means that (W/L)p: 

 

 

x 
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Unfortunately, in our technology it is not true that Vdsat,p = Vdsat,n and Vtp = Vtn, but the result we 

can get is the same, since the ratio between the process transconductances is something like 3.8, very 

much similar to the found 3.5. 

 

Moreover, the threshold voltage is a function of the beta factor, not an absolute function of the aspect 

ratios. 

 

Simulations result 

X axis is in log scale, y axis in linear scale. The result is that even if I vary the beta, the threshold voltage 

is not changing much → threshold voltage is a mild function of beta. 

 

DETERMINING THE NOISE MARGINS – NMH and NML 

The VTC is not linear. Let’s approximate it with a piecewise linear approximation with 3 pieces of 

straight lines. 

Vol = 0V and Voh = Vdd. 

The transition region has the same gain at threshold as the original characteristic. 

 

The equation of the straight line is the one in the red box. How can we asses Vil and Vih? 

We substitute in the line formula Vol (for Vih) and Voh (for Vil). 

x 
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Vm has to be in the middle to maximize the noise margins because if we develop the expressions for 

NMH and NML, and Voh = Vdd and Vol = 0V in a FC-CMOS inverter, if the gain g is large, in formulas 

x only the Vm term survives. 

 

NMH = Vdd – Vm 

NML = Vm 

 

Hence Vm = Vdd/2 we maximize the noise margins. 

 

Gain determination 

Let’s consider (W/L)p = 3.5 and for the nMOS = 1, so that the beta factor is 3.5. 

We need to compute the real gain of the inverter at the switching threshold, the analog small signal gain. 

 

An inverter can be seen as two transistors in common source configuration. Firstly I compute the 

shortcircuit current: icc = (gm,n + gm,p)*v_vin. 

 

The Rout is then the parallel of the two output resistances: Rout = r0p||r0n. 

Then the gain is Rout*icc and it is equal to -30. 

 

Then to compute the gm we use the equations for the transistors assuming they are working in velocity 

saturation. 

In the equations for gm and r0 Vgs = Vm because there we are evaluating the parameters. Lambda is the 

only parameter that changes with the length, because it is equal to 1/Va. 

 

If I perform the derivative of the voltage transfer characteristic (the real one), we notice that the gain is 

not reaching the value of -30, but it is more or less -17. 

So if we assess the real noise margins are: Vil = 1.03V, Vih = 1.45V and NMH = 1.05V, NML = 1.03V 

(with a value of -30, NML = NMH = 1.21V). 
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DYNAMIC PERFORMANCES 

We want to assess the propagation delay to get to a formula tau_p = ln(2)*Req*C. 

 

RC MODEL TO EVALUATE THE DELAY 

 

We want to model the transistor as a single resistance. Let’s consider the pull up transition, it is performed 

by the pMOS, which can be modelled by an equivalent resistance, it is not that the transistor works as a 

resistance, it is not a static resistance Ron, but it is an equivalent resistance, the transistor is not in ohmic 

region. 

 

For the pull down transistor it is the nMOS that instead discharges the output capacitance. 

The equivalent resistance can be easily computed, the problem is to assess the capacitance value. 

 

For the pMOS let’s assume an aspect ratio three times the aspect ratio of the nMOS, so beta = 3. 

Moreover, the minimum aspect ratio for a transistor, in any technology, is 1.5. The size of the inverter 

corresponds to the aspect ratio of the nMOS transistor. 

 

In terms of parasitic capacitances, the protagonist is the pMOS because it has larger dimensions, it has a 

larger W. 

 

GATE AND INTRINSIC CAPACITACES 

The purpose is to assess the gate capacitance of the inverter and the capacitance at the output. I know the 

specific capacitance seen at the drain and at the gate of a transistor, C’g = C’d = 2 fF/um. 
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This said, the length of the transistor is the minimum, 0.25um (always the minimum in digital 

electronics). 

The beta factor is chosen equal to 3, so that the Vm is approximately in the middle of the characteristic. 

This ensures also a good equivalence between the equivalent resistances of the transistors, so an equal 

propagation delay for the two transitions. 

 

For a pMOs transistor with W/L = 1, the Req = 31k, while for the nMOS 14k. So with beta = 3, Vm = 

Vdd/2 and Req,n = Req,p, more or less. 

 

The upper script s indicates the generic size s, where s = (W/L)n as previously said. 

We multiply the specific capacitance for the width of the transistor and we get Cg and Cint. 

This is the worst case analysis and it works fine. 

 

Detailed analysis 

 

The capacitance that experiences the Miller effect is the overlap capacitance, that is the only contribution 

that matters in the gate-drain capacitance. 
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Intrinsic capacitance 

 

Miller effect 

 

Contributions to the intrinsic capacitance 

For the low to high transition, the Cint is 3.07fF. With our analysis we assessed it equal to 3fF. 

The dominant contributions are the drain bulk capacitances, the diode capacitances, and the most 

impacting one is the one on the p side. 
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A similar result can be obtained with the high to low transition. So the two transitions have similar 

equivalent capacitances equal to 3 fF. 

 

Contributions to the Cext 

Also for the gate capacitance Cext (extrinsic capacitance), the result is of 3.09 fF. 

 

IDEAL MINIMUM SIZE INVERTER 

Let’s consider an inverter with size s and beta = 3 (threshold in the middle and approximately equal 

propagation delays). If I increase the size of the inverter, the capacitances increase because the aspect 

ratio of the nMOS is increasing, as well as the one of the pMOS. 

Cext = Cint as seen before, and we have a linear relationship, so if I increase s from 1.5 to 15, the Cext 

= Cint = 30 fF, a factor 10 bigger. 
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Moreover, an inverter with s = 1 is not physically implementable, but if I could implement it, its Cg = 

Cint = 2 fF. 

So there is a linear relationship between the size of the inverter and the gate and intrinsic capacitances, 

and the capacitance doesn’t depend on the transition high to low or low to high. 

 

An inverter with s = 1 and beta = 3 will be considered the minimum size inverter. 

 

INTRINSIC PROPAGATION DELAY 

For the transition from H to L the nMOS plays, so I need its equivalent resistance (x). Furthermore, I’m 

also considering a minimum size inverter. 

Of course we are computing these values for the 0.25um technology. 

 

The one in the red box is the intrinsic propagation delays, without having the inverter loaded. 

16 ps will be the intrinsic propagation delay of our inverter. 

 

If I increase the size e.g. to 10, the Cg = Cint = 20 fF, but also the equivalent resistance changes, they 

decrease by the scaling factor of the size (10 in this case). So overall the intrinsic propagation delay stays 

the same. 

 

In reality, the Req is proportional to 1/s, and the C to s, so they cancel out in the intrinsic propagation 

delay. 

 

 

x 
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LOADED PROPAGATION DELAY 

 

We are adding an extrinsic contribution. Now the capacitance in the formula of the delay is the sum of 

two contributions, Cint and Cext. 

 

I can factor out Cint from the propagation delay formula x. 

Let’s then define gamma the ratio Cint/Cg, and in most of the technologies gamma = 1. Gamma is called 

self-loading factor. 

 

With this trick we arrive at the final formula y. In fact, Cext/Cg is the so-called fan-out. It doesn’t 

consider the intrinsic contribution, but just the extrinsic4 capacitance and the gate capacitance. 

 

Tau_p0 depends on the technology and on the beta factor, but since everything is fixed, it is a constant 

number. 

The only parameter with which we can change the delay of a gate is to change the fan-out. If I increase 

Cext (Cl), the fanout increases linearly and also the propagation delay increases linearly. 

 

How can I reduce the delay of an inverter? 

The only trick we can adopt is increasing the sizing, so the width of the transistor so that Cg (and Cint) 

is increased and also Req is decreased, and the fanout is decreased. 

The best delay we can get is tau_p0, the intrinsic delay. 

 

Inverter sizing 

If we increase Cext, the tau_p increases 

linearly. If instead we consider a fixed Cext, 

if we increase the size tau_p decreases up to 

the minimum value tau_p0. The size that 

corresponds to 16 ns is the maximal one, no 

reason to increase it further. 

 

 

 

 

 

 

x 
y 
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INVERTER SIZING 

 

Typically beta is the ratio of the aspect ratios, pMOS over nMOS. To have the Vm (switching threshold 

of the inverter) at half Vdd to maximize both noise margins, beta = 3.5, so it is an inverter with the best 

reliability (highest noise margins). 

 

But if we look at the intrinsic propagation delay for the two transitions. Req in our technology, 0.25um, 

is 13kOhm for the nMOS. Then Cint = C’ (specific capacitance per unit width) multiplied by Wn + Wp, 

where Wi indicates the width → C’(W/L,p +W/L,n)*Lmin = Cint. 

With a beta = 3.5 we get tau_HL = 20.3ps. 

 

In the second case from low to high, the equivalent resistance scales down with the aspect ratio, so we 

need to divide by the beta. tau_LH = 13.8ps (at first approximation the Cint is the same). 

Then to assess the propagation delay I take the average, but in this case the two propagations delays are 

very different. 

 

Typically, in digital electronics the worst-case scenario is what counts the most, but we still take care only 

of the average propagation delay whatever the transition because somehow we can have both the 

transition in some nodes, so the average is more important, because it is not that in any node we have 

the worst transition → average = 17ps. 

 

Let’s try to compromise the reliability to improve the delay time. So we choose beta = 3. In this case the 

threshold is not in the middle exactly, but not very far from it, very close to it. With beta = 3, pMOS size 

changes and the tau_HL = 18ps (faster), but tau_LH = 14.3ps (slower). However, overall we have an 

average of 16ps, better. 

So we don’t have the best reliability but the best propagation delay, also because in this case the equivalent 

resistances of the pMOS and nMOS are more similar → the idea is to better balance the transistors in 

terms of Req. 

 

Equal delay 

Req,p = Req,p_0/beta. 

The beta factor acts on the Req but also on Cint, where I have the term Wn+Wp, and W/L,p is beta. 

The high to low transition increases proportionally to beta, while the low to high dependance on beta is 

more complex because we have beta both at numerator and denominator, so we have like a parabola. 

When beta tends to inf, we reach a plateau of more or less 10ps for the low to high transition, and the 

dependance on beta is not present because it is like if the nMOS transistor is negligible. 

 

For beta = 2.4 we have the same propagation delay. It can be assessed graphically or numerically, it’s the 

same. 
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Now the delay is minimum, 15.3ps, but I have worse noise margins, compromising the reliability to have 

better delays. 

In the point where the delay is the same, also the Req of the two transistors are the same. 

 

In the graph, it seems that there is a minimum point in the average propagation delay curve t_p. 

Mathematically speaking, to get the minimum we need to take the derivative of the average of the delays 

with respect to beta and put it to 0. 

 

The minimum delay is 14.6ps, but the Vm = 1.07V. 

A value of beta = 2.4 has the advantage, since the aspect ratio of the pMOS is reduced, of reducing the 

area of the pMOS, and also of reducing the power consumption of the pMOS, because the capacitance 

is smaller. Hence the best beta factor is 2 or 2.4 (still however compromising the reliability). 

 

In our case, we will however use beta = 3. 

 

ENERGY VS DELAY TRADE-OFF 

For sure there is a balance between power consumption and propagation delay. For a given technology, 

we consider the inverter and for the inverter we assess the energy delay product, which has to be 

minimized. 

 

Since energy and delay are two features traded-off, this product is a figure of merit for a given technology. 

Let’s consider the energy for a switching event (low to high or high to low). To be honest, only for the 

low to high transition energy is spent (pull-up) of the voltage across a capacitor, and this energy is 

C(Vdd)^2. For the pull down no energy is consumed. C and Vdd depend on the technology. 
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Let’s now assess the intrinsic propagation delay of the inverter. Again, the reference technology is 0.25um 

from Intel. Cint is not a function of Vdd, while Req depends on the technology because depends on Vdd 

(formula seen previously). Of course, if we change the technology the value changes. 

 

If we multiply the average energy (1/2 * C *Vdd^2) per event spent by the power supply generator by the 

intrinsic delay, we have a Vdd^3 at the numerator, and Vdd – Vte (Vte = effective threshold = Vt + 

0.5*Vdsat) at the denominator. 

 

As we can see in the plot below, the delay decreases with Vdd, and then it reaches a plateau for Vdd that 

tends to inf. Energy instead increases quadratically. 

In our circuit, we can change Vdd up to a maximum value of 2.5V in 0.25um. We could overpower the 

circuit, it works for a while but then it collapses. 

 

Now, if I have a circuit that doesn’t have to work as fast as it can, I don’t want to optimize the dynamic 

performances. To decrease the power consumption, which is the Vdd to choose? Of course not the 

maximal one, the minimum value permitted is the value that grants for the circuit to work more or less 

at 1kHz, e.g. 0.7V. Thus we minimize the power consumption. 

Vice versa, if I don’t care about the power consumption but I want a much larger frequency, I can use 

2.5V, eventually also overpowering the circuit, but not for a long time. 

 

If we decrease Vdd the energy consumed decreases but the dynamic performances (the delay) is 

worsened. 
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If we decrease Vdd, the characteristic of the inverter becomes flatter, so also the small signal gain in the 

transition region decreases. There is a minimum value corresponding to 3*Vthermal = 75mV to have the 

inverter working and a reliable characteristic so that the small signal gain is bigger than 1. In fact, for an 

inverter to work fine the slope must be at least 1. Of course, with this value the transistor is very slow, 

because it works in the subthreshold regime. 

 

Design for performance 

Cext is the extrinsic contribution of another circuit. Cg(s) means that the gate capacitance of the inverter 

is Cg(s) = s*Cg(1), so linear proportionality. Cg(1) is the gate capacitance of the minimum size inverter. 

Same reasoning for Cint(s) 

 

 

Instead, Req scales down with the size (1/s). 

 

Term x is the intrinsic propagation delay, it is a number independent on the size, because capacitance 

and resistance scale with opposite trends. 

In the other term we have a 1/s dependance in Req(s). 

 

To improve performance, to decrease the propagation delay, I can act on different terms: 

- Keep the capacitances as small as possible, even if sometimes it cannot be done, e.g. if we have a 

load → use minimum area transistors and circuits, because this means reducing the capacitances, 

so power consumptions and delays.. 

- For what concerns the minimum size inverter, we can increase the size but at a certain point we 

reach a plateau tau_p0, over which there is no more benefit. 

- Increasing Vdd decreases the intrinsic propagation delay, but there is a limit to Vdd. In any case, 

better not to use a smaller Vdd to optimize the intrinsic propagation delay → use the maximum 

Vdd we can apply to the technology. 

 

Vdd has kept to the maximum 

value as possible because the 

capacitance is a mild function of 

Vdd, only the junction 

contribution to it depends on 

Vdd. What changes with Vdd is 

Req, which improves increasing 

Vdd. 

 

 

 

 

x 
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In the image we have two inverters in cascade. Up to now we have considered an abrupt transition at the 

input, a step function, which is not present in real circuits. 

If we don’t have an ideal signal at the input, let’s assess tau_p as a function of tau_p,in. In the plot, tau_p 

vs tau_p,in different values. 

Tau_p has a quite linear dependance with respect to tau_p,in. 

 

x is the real expression. Tau_step is the classical expression considering an abrupt transition at the input, 

and ideal one. Factor eta depends on the technology. However, since eta = 0.25, the dependance on 

tau_p,in is mild. 

 

If we have similar propagation delays, considering just the ideal delay time leads to an error of 25% more 

or less, so even if the circuit is real, let’s consider the intrinsic propagation delay as if the input signal is 

ideal, so the ideal delay. 
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INVERTER CHAIN 
 

Let’s suppose to have a capacitive load to be driven outside the IC package with the minimum 

propagation delay as possible. 

 

Given Cl, let’s connect directly one inverter to the capacitance. The size s1 that minimizes the 

propagation delay is the smallest possible one, but we have to drive the inverter with a uC, and the uC 

may struggle to drive a very big inverter. So at the output of the digital circuit uC we put a minimum size 

inverter so that the processor doesn’t struggle in driving it. But in this way the propagation delay 

increases, because the inverter is smaller (fanout is very large). 

 

To reduce the propagation delay from the output of the processor to the Cl we add inverters in the middle, 

even if it seems counter-intuitive. 

 

 

Once we have circuits in cascade, the overall propagation delay is the sum of the propagation delays 

assessed in ideal conditions, so the ideal propagation delays with an abrupt transition at the input. 

 

INVERTER CHAIN DELAY 

Cl and s1 (minimum size) are fixed. 

 

Let’s express the propagation delay as the expression of physical terms. 

Now we explicit f_i, the fanout of the stage i. Let’s design the i staged, preceded by the i-1 staged and 

followed by the i+1 stage. 
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I’m considering the delay of the stage i. 

 

The unknowns of this design, if the number N of inverters is fixed, are the sizes of the inverters up to 

s_N, except for s1. The propagation delay is tau_p = f(s1, s2, …, s_n). We should take the derivative of 

tau_p with respect to any variable s1, s2 and so on and equate it to 0. 

 

Let’s consider a generic J stage. I have to put dtau_p/ds_j = 0. But s_j, size of the generic J stage, is 

proportional to Cg,j, so we can assess the derivative in terms of Cg,j. 

Cg,j appears in both the propagation delays of inverter J-1 and inverter J. 

 

So in assessing the derivative dtau_p/dCg,j, I have to consider the two terms. 

 

The result is the following. 
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The first term of the second equation is the fanout of the J-1 stage, and the same for the inverter J: f,j-1 = 

f,j. So the delay is minimized if the generic inverter J has the same fanout of the preceding one. 

 

This means that all the inverters must have the same fanout, which also means that all the inverters have 

the same delay. So if we put in cascade inverters, we minimize the dealy if all the inverters have the same 

fanout, i.e. same electrical effort. 

 

Instead, if we look at the first formula, it means that if we take a capacitance, this capacitance is the 

geometrical mean between the following and previous capacitance. 

 

Since the last stage has to drive the load, the last capacitance is indicated as C_L. 

 

Since the capacitance at the gate and output node are proportional to the size, we can assess the generic 

capacitance Cg,j as the gate capacitance at size s1 times the size. 

The results we can get are the one in the image above, already described. 

 

Let’s now consider the chain of inverters. The first capacitance is Cg1, but since s1 = 1, Cg,1 = Cg(1), but 

only in the first inverter, if s1 = 1.5, Cg,1 = Cg(1.5). 

This said, let’s write the product of all the fanouts all the way down to fn. All the stages have the same 

fanout, that we can call f_opt, the one we want to assess. 

 

Let’s compute the product expressing the fanouts. 

The product cancels out, and in the end the only two terms remaining are C_L/Cg,1. This ratio is called 

F, that is the Path Fanout (or path electrical effort). 

Then, F = (f_opt)^N. 

Since N is fixed, we can assess the optimal fanout. 
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This is the optimal fanout for all the inverters of the chain of inverters to minimize the dealy. 

 

Optimal fanout 

 

The propagation delay is the sum of all the propagation delays, but since the fanout is the same, the 

propagation delay is the same for any stage. So the total delay is the N sum of the delay of a single stage 

inverter. This is the minimum delay we can get. 

 

As for the stages sizing, the condition that we have to grant is to have a fanout = f_opt. Let’s write the 

capacitances of the chain. The reference inverter is the one on the right. 

 

 

Let’s write the fanout of the first stage. We find that is the ratio between the size of the following inverter 

and the size of the inverter itself, and it must be equal to f_opt. 

 

We can do the same thing for the second inverter, getting s3/s2, but s2 is already determined. 

Generalizing, we get the expression x. 

 

Example 

N = 3, C_L = 16 fF and s1 = 1 as data. 

Since s1 = 1, Cg,1 = 2 fF. 

In the end, F = C_L/Cg,1 = 8 

 

 

 

x 
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As for the delay, it is N times, so 3 times the single delay, that is 9 times tau_p0. We can notice that if the 

minimum size inverter is directly connected to the load, the delay would be the same.  

 

Example of non-minimum input stage 

 

Same procedure of the previous example. Now the F is the same as before because the input stage is not 

minimum size, but twice the minimum size, and also the load is (32 fF). 

 

OPTIMUM NUMBER OF STAGES 

Now s1 is fixed, C_L is fixed but N is a variable. The formula for f_opt is valid whether N is a parameter 

or not. 

 

x 
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Let’s now reason on the propagation delay of the chain of inverters. To obtain the best N value, we take 

the expression of the delay and we take the derivative (not the partial one because N is the only unknown) 

and put it to 0. 

 

The Nth-root of F is f_opt. Our variable of interest in x is f_opt, but we get an implicit result, because 

f_opt is in the both sides of the equation. 

But if gamma = 0, so the Cint = 0 (the inverter has an output node without parasitisms), f_opt = e = 2.72. 

 

We can plot f_opt as a function of gamma. 

 

If I can decide also the number of stages, the best is to select the number of stages, from a mathematical 

perspective (not electronic one), to get the minimum delay, that corresponds to a f_opt = 3.6. We have 

to select N such that f_opt = 3.6, i.e. f_opt ^N = F (if gamma = 1). 

 

The problem is that N = ln(F)/ln(3.6) is not an integer number typically. So what should we do? The 

answer will be given later on. 

 

Impact of self-loading on the optimum delay tau_p 

 

I’m plotting the delay, normalized by tau_p0, as a function of the fanout of the stage. On the x axis I’m 

changing f and accordingly the number of stages N. On the left, if gamma = 0, the minimum is always 

reached at 2.7, that is e. on the right, we have the minimum always at 3.6. So whatever the load, the 

minimum of the delay is reached for the sizing corresponding to a fanout = 3.6. This might correspond 

to a N value that is not an integer, because it is a pure mathematical analysis. 

 

An important thing. The minimum of the three curves on the right is rather flat if we move from left to 

right on the curves, so 3.6 is not used, typically something bigger is used, like 4 or 5. The advantage of 
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selecting a higher f allows to reduce the overall area of the circuit, which is a benefit in terms of cost and 

power consumption. 

 

BUFFER DESIGN 

S1 is fixed, then C_L is fixed (64*Cg(1)). Hence F = 64. The goal is to minimize tau_p, from the input to 

the load. 

Initially, N = 1, so the delay expressed in terms of tau_p0 is 65. 

Let’s add an inverter in the chain. Once N is fixed, the optimum fanout is not 3.6, because 3.6 is when N 

is a free parameter. So f_opt = sqrt(F) = sqrt(64) = 8. 

 

Now let’s add a third inverter. Of course, I need to reoptimize all the stages. f_opt = 3-root(F) = 3-

root(64), which is 4, so we are close to 3.6. 

The 4 inverters solution is good in terms of inverters, but the problem is that, despite the delay that is 

slightly bigger, we have an area of 2.8 + 8 + 22.4, and it is a very huge size, which means huge area. So 

the circuit with 3 inverters is much smaller than the one with 4 inverters. 

 

Remark 

If I had just s1 and C_L, the first thing to do is to compute Not. 

 

Nopt = 3.25 stages, and for each stage the fanout is 3.6, whatever F, because we have f_opt = 3.6 in 

concordance with Nopt. But unfortunately I cannot design 3.25 stages, but do I use 3 or 4 stages? The 

closer, 3. 

But with N = 3, we need to assess the f_opt = 3-root(F) = 4. 

 

In general, the value of f_opt that I want to get is very close to 3.6, so if it is very far from 3.6 it is maybe 

an error. 

 

NORMALIZED DELAY FUNCTION OF F 

Unbuffered is with the minimum size inverter directly connected to the load capacitor. The values are 

the ones of tau_p0. The delay can be assessed as tau_p = tau_p0*(1+F/gamma). 

The other possibility is to use two stages. N is fixed to 2, so f_opt = sqrt(F). The delay is tau_p = 

2*tau_p0*(1+f_opt/gamma). 

The last case is the inverter chain, so I can choose N because it is treated as a variable. It increases area 

and power, but in terms of delay it is the best solution. 
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Let’s assess Nopt for the inverter chain. tau_p = Nopt*tau_p0*(1+3.6). We have 3.6 because it is the 

optimum fanout. 

 

 

If F = 100, do I select N = 3 or 4? 

 

If N = 3, the fanout is 4.64 for all the inverters for sure, so we have an equation more to verify that 

everything is fine. Moreover, I know that the fanout = C_L/s3*Cg(1), so the last inverter can be used to 

double check the sizing. 

 

If N = 4: 

 

In terms of delay, the best solution is to have N = 4, and in fact 3.6 is closer to 4 than to 3. However, if 

we consider area and power consumption, the N = 3 solution is better. 

 

POWER DISSIPATION 
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In digital circuits, there are 3 contributions to the power consumption. In good designs, the first one is 

the dominant one and the other two are negligible. The second occurs if, for whatever reason, both the 

pull up and pull down network are on at the same time, so it is like having a shortcircuit. This might 

occur during transients, of course not at steady state. The current that passes is called cross-conduction 

current. 

Then the last contribution is the static DC contribution. 

 

DYNAMIC POWER CONSUMPTION 

It is the power that the PS generator delivers to charge the output capacitance. This corresponds to an 

energy C_L*Vdd^2 = Vdd*Q = Vdd*(Vdd*C). 

 

If the pull up occurs with a frequency called pull up frequency f0→1, the power is the energy multiplied 

by f0→1. 

If we can, reducing Vdd would be good because it contributes with the square power to the power 

consumption. 

 

The problem is how to assess the pull up frequency. 

 

Switching activity 

An inverter is fed with a digital signal, and the duration of the bit is Tbit. I can define the clock frequency 

fclock as 1/Tbit, so the bit per second (bitrate). 

Let’s consider a stint of time in which we have n transitions from 0 to 1, n0→1. So for n times we charge 

the capacitance to Vdd. The overall energy spent to charge the capacitance is C_L*Vdd^2*n0→1. 

 

Now, let’s define the switching activity as in the image. N is the number of bits in series. The duration of 

the bitstream is N*Tbit. The probability with which we observe a pull up is the ratio in the image x. 

x 
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The limit of ratio x is the switching activity, which is just the probability of having a 0 in one bit period 

times the probability of having a 1 in the following bit period if in the previous one we had a 0 (conditional 

probability). 

 

If we have a switching activity, we can assess the power consumption multiplying the energy per pull up 

event per the bitrate and the switching activity, whose product is f0→1. 

Of course, the switching activity is always smaller than 1. 

 

Let’s consider two different cases, and in the first one we have a deterministic signal in which every Tbit 

we change from 0 to 1 and viceversa. How much is the switching activity? 

It Tbit = 1ns, every 2ns we have a pull up, so f0→1 is 1/2ns = 500MHz. The switching activity is 0.5. 

 

We could arrive to the same result considering the probability. In fact, the probability P(0) to have a zero 

in a bit period is 0.5, because 50% of the times we have a 0 or a 1. Instead, P(1) is 1 because we are sure 

that after a zero, the probability to have a 1 is 1. So the switching activity is 0.5*1 = 0.5.  

 

Let’s consider now a random signal that can be 0 and 1 with the same probability. So in one Tbit I can 

have 50% probability of 1 and 50% of 0, and the same in the following Tbit. 

The switching activity is now 0.5*0.5 = 0.25, because the periods are unrelated. Hence the pull up 

frequency, if we consider the same signal, is 250MHz. 

The case in which we deliver power from the PS generator is in the transition from 0 to 1. If the bit 

sequence is 1 → 1, 0 → 0 or 1 → 0, no power is dissipated. 

 

CROSS-CONDUCTION POWER CONSUMPTION 

It is due to the current from Vdd to GND during a transition event. Let’s consider an ideal inverter with 

no input and output capacitances. If C = 0 at the output, the BW is infinite and the propagation delay is 

0. 
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Let’s consider now not an ideal input signal, with abrupt changes, but a real one with finite slopes for the 

transitions in a time t_in to go from 0V to Vdd. 

During this t_in, once we crossed Vdd/2, the output is Vdd/2 because we are in transition region and the 

two transistors work as current generator, and a current from Vdd to ground comes from Vdd, so we have 

power consumption. 

 

The current is delivered both during the transition up and transition down. This form of power 

consumption is also called short circuit current, because we have a pull up and pull-down transistors on 

at the same time. 

This current that flows occurs only because we have real signals with finite slope at the input. In the case 

of ideal signals, the shortcircuit current is 0. In fact, during the rising edge we move immediately from 

0V (nMOS on and pMON off) to Vdd, and so immediately we switch off the nMOS and turn on the 

pMOS. But this transition is immediate, so there is no current because the two transistors are never on at 

the same time. 

 

In the realistic case, i.e. with a capacitance at the output, this power dissipation contribution is negligible 

if the slope at the input, so the propagation delay of the input signal, is more or less equal to the 

propagation delay of the output signal. This happens in the superbuffer, so if we size the superbuffer in 

order to minimize the propagation delay, this power dissipation contribution is negligible with respect to 

the dynamic one due to the charge and discharge of the output capacitance. 

 

Cross-conduction current 

 

The input signal is the black one in the upper plot, whose signal transitions are linear. No output 

capacitance is present (ideal inverter). The switching threshold is at Vdd/2. 

We want to assess the triangular shape current. As long as the input voltage is 0V, the output voltage is 

Vdd and the current is 0A. We start to observe a current from Vdd to ground from the Vin value such 

that the Vt,n, threshold voltage of the nMOS is crossed. The nMOS is in pinchoff, because the Vgs is so 

small that the voltage across the channel is close to 0, Vdsat is not overcame. Hence the current depends 

on the square of the voltage. 

Then, as soon as Vov > Vdsat, the nMOS enter the velocity saturation region. At the threshold (of the 

inverter) we have the maximum amount of current (both transistors behave as current generators in 

velocity saturation region). After this point the pMOS works as a current generator (with decreasing 

current because we are reducing the Vgs of the pMOS) and the nMOS as a Req. 

 

The peak current can be computed with formula x. Everything in this formula is fixed except for the 

aspect ratio. The base of the triangle representing the peak current is a fraction of Tin, because current is 

x 

Tin is missing 

y 
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not nihil in the range between the Vt of the transistors. So the peak current depends on the aspect ratio 

(i.e. on the size of the inverter), this is what counts. 

 

To assess power consumption we need to resort to the energy concept, energy spent by the PS generator. 

The energy is wasted in correspondence of each transition, low to high or high to low. It doesn’t depend 

on the sign of the transition. We can consider just one transition, because the two are equal. 

 

The energy is the area of the triangle subtended by the Ipeak current y multiplied by the PS voltage. 

Technically, E = Vdd*Q, and Q is the area of the triangle y. 

Hence E = ½ * delta_T * Ipeak * Vdd. 

 

Whatever the input transition, if the transition has a finite slope, we have the following (Ecc = cross 

conduction energy). 

 

Let’s consider an input signal with a bitrate of f0 (or fck) and that is equiprobable, so the same probability 

of having either a 0 or a 1 (random signal). If f0 is the bitrate, we have a transition rate of ½ of f0, because 

only in the cases 0 → 1 and 1 → 0 out of 4 (0 → 0 and 1 → 1) I have a transition. 

So to assess power consumption we need to multiply the energy and the transition rate. On average, we 

have a transition 2*Tbit, with Tbit = 1/fck. E.g. if fck = 1 Gbps, Tbit = 1ns and we have a transition 

every 2ns. 

 

Again, also the power consumption due to the cross conduction current is proportional to the duration 

of the input signal, the bitrate and the aspect ratio of transistors. 

It depends on the bitrate because it depends on how many transitions we have in a unit time. 

 

This cross conduction current is proportional to the bitrate as the dynamic power consumption was. 

Moreover, Pcc doesn’t depend on the output capacitance at first approximation, with respect to the 

dynamic one. 

As an important remark, this Pcc expression was derived without considering the output capacitance, 

considering an ideal inverter (no delay at all). The next step is to add the capacitance. 

 

Addition of a capacitance at the output 

Let’s consider just one transition. 

The cross conduction current is the one flowing in the pMOS transistor. In fact, let’s consider an ideal 

step in input and a capacitance at the output != 0. In this case the pMOS is switched off immediately, 

and the current from Vdd to ground 0 if the pMOS is switched off immediately. But we have a current 

through the nMOS to ground, discharging the output capacitor. With an abrupt transition there is no 

cross conduction current. 

 

Worst case scenario 
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Instead of an abrupt one, let’s consider an input with a finite slope. During the transition both transistors 

are on and we have a current from Vdd that is the cross conduction current. In particular, in the nMOS 

we have two currents: the cross conduction and the one coming from the capacitance discharge. 

Instead, in the pMOS flows uniquely the cross conduction current icc, so to assess icc we have to consider 

only the pMOS. 

 

If we add a capacitor, the red triangular shape is modified. Let’s consider the case C_L = inf, the 

characteristic of the inverter becomes flat because we are not able to discharge C_L in a short amount of 

time. In fact, a C_L = inf can be assumed as a voltage generator at first approximation. 

In an intermediate case, knowing that if C_L = 0 we have the fastest possible transition, and increasing 

the capacitance we move ‘upwards’. 

 

Let’s try to depict the current if C_L = inf. The Vds,p is 0V, so the current in the pMOS is 0 whatever the 

Vgs, so there is no current icc. 

 

 

Let’s consider now the intermediate case. The icc has a lower peak value Ipeak, and the triangle is 

skewed, the peak doesn’t correspond anymore to the crossing of the inverter’s threshold of the input 

signal. The area underneath the curve decreases and the Pcc decreases. 

 

Hence in terms of Pcc, considering a situation with no capacitor at the output is the worst case. 

 

When the input ramp starts to increase the operating region of the pMOS transistor is the ohmic one. 

then the output voltage decreases (discharging of C). Given that Vds is the difference between Vdd and 
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the VTC, in the red case with no output capacitor the Vds is bigger given a certain input voltage with 

respect to the blue case. Hence the current in the blue case is smaller than in the red one.  

Then if we go on along the input slope, approximately at Vdd/2 we have both transistors acting as current 

generators. In the blue case the current is smaller because the pMOS is operating with a Vgs (distance 

between the input black curve and Vdd) smaller than in the red case around Vdd/2. 

 

NB: we can have a icc only in the region where we have a finite slope, not when Vin = 0V or Vin = Vdd. 

The contribution of Pcc comes into play when the slope of the input signal is very small, so the area of 

the icc is not negligible with respect to the dynamic power consumption, the cross conduction power is 

overwhelming the dynamic one.  

 

LEAKAGE CURRENT 

It is a static contribution that is typically negligible. It becomes dominant only if fck = 0, where the Pcc 

and Pdyn are 0 because both directly proportional to fck. 

 

Let’s consider an inverter with a steady voltage at the input, e.g. 0V. nMOS is off and pMOS is ohmic 

with Vds more or less 0V, so Vout more or less Vdd. 

 

We have to consider that even if Vgs,n = 0V there is a leakage current. Moreover, the drain and the bulk 

contacts form a diode (ground to output node, that is the drain).  
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In the nMOS we have two currents flowing. The subthreshold current and the leakage current of the 

reverse biased diode (the one at the bottom). These two currents come from the pMOS, which is in ohmic 

region. 

The current in the upper diode is negligible because the voltage across its pn junction is approximately 

0V. 

 

 

We can identify a static contribution: Pdc = Vdd*I = Vdd*(Isub + Ileak) 

 

Let’s consider the opposite case with static Vdd in input. The output will be close to 0V, and the leakage 

current is in the pMOS transistor. Moreover the upper diode has now Vdd of reverse bias, so we have a 

leakage current. The Ileak and Isub sum and flow in the nMOS, which is now ohmic. Because of this, 

the output voltage is not exactly 0V, but approximately 0V. 

 

REVERSE-BIASED DIODE LEAKAGE 

 

In this case we have a current from Vdd to the output node, which is approximately 0V. This leakage 

current strongly depends on the temperature of the circuit. 
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SUBTHRESHOLD CURRENT 

In the image it is represented the Id vs Vgs characteristic (transcharacteristic of the transistor). It is in 

linear-log scale to highlight the subthreshold current. Below Vt = 0.4V we have a non-negligible 

subthreshold current, even if at Vgs = 0V. For Vgs = 0V we have more or less Isub = 10 pA. 

 

The current of the transistor in subthreshold region depends exponentially on Vt (check Compagnoni’s 

notes), so if Vt is increased, Isub increases. In the scaling down process, Vt decreases, so Isub increases. 

E.g. if Vt = 0.1V, with the same aspect ratio, the current increases up to 100nA. This is due to the 

exponential dependance. 

Also in subthreshold, even for Vds = 0V the current Isub is 0. 

 

PRINCIPLES FOR POWER REDUCTION 

- Reduce gate size, i.e. physical capacitance. In fact, during operations, only Pdyn = 

C*Vdd^2*f0→1 counts. To reduce it, it is better to use circuits with minimum area, keeping the 

size small. 

- Reduce voltage, at the cost of reduced time performance, i.e. operating frequency. 

- Reduce switching activity. Once we have a fsw, this frequency depends on the switching activity. 

We can theoretically reduce it to reduce the power consumption. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



81 
 

IMPACT OF TECHNOLOGY SCALING 
 

It corresponds to the improvement of the CMOS technology, L is reduced together with the oxide 

thickness, overlap length and so on. on the other side, also the Vdd and Vt are reduced. 

 

Rationales for technology scaling 

Make things cheaper: 
- Want to sell more functions (transistors) per chip for the same money. 

- Build same products cheaper, sell the same part for less money, because we use less silicon. 

- Price of a transistor has to be reduced. 

But also want to be faster, smaller, and to lower power consumption. 

 

TECHNOLOGY SCALING MODELS 

- Full scaling (also called constant electrical field): dimensions and voltage scale together by the 

same factor S. However, it we continue to reduce Vt, leakage current becomes a problem because 

we are no more able to switch off the transistor. If we scale down the oxide thickness in the 

channel and we keep constant the voltage between gate and bulk, the electrical field across the 

oxide increases, with drastic effects on the reliability of the circuit. 

- Fixed voltage scaling: most commonly used model so far. Only the dimensions scale, voltages 

remain constant. 

- General scaling: todays’ approach. Voltages and dimensions scale with different factors. To keep 

the maximum overdrive voltage constant, better not to use the same scaling. 

 

Scaling relationship in full scaling 

 

Not only Cg, but also the Cint capacitance is reduced by a factor 1/S. 

As for Idsat (that is the maximum current), it depends on C’ox, which is epsilon_ox/tox and Vdsat, 

which is decreasing with the technology scaling. Also Vdd is scaled down. In the end Idsat decreases, 

which is not so good because it slows down the speed of the circuit. However, in digital electronics it’s 

Req that matters; in fact, Idsat reduces, but also the voltage does, and since Req is voltage over current 

→ Req is almost the same regardless the technology we are using. 

 

As for the delay, it is Req*Cg, so overall it decreases by a factor 1/S due to the decrease in Cg. The circuit 

is faster just because we are using a smaller capacitance, the benefit is in terms of capacitance. 

 

As for the energy per event, C and Vdd are both reduced, so a scaling with 1/S^3. As for the power, we 

have a dependance on the pull-up frequency, which can improve with a factor S. Hence power 
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consumption is reduced by a factor 1/S^2. If se compare instead two circuits with the same frequency f, 

the improvement in technology scaling is 1/S^3 because f is the same in both. 
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WIRES IN ICs 
 

INTERCONNECTS IN CHIPS 

 

The white region is SiO2, so different layers are built inside the silicon dioxide. Plugs that allow to 

connect two different layers of metals are called via, while from the polysilicon surface to first layer of 

metal is called contact. 

 

The cross-section can be different, but still the drains of the inverters are to be connected. The same has 

to be done with the gates, and then the two source contacts separated. To be honest, also the n+ diffusion 

region can be used to perform a connection at silicon level. 

 

Hence an interconnection can be done with n+ diffusion region, polysilicon or metal. 

A designer can choose, typically, the type of interconnection, that usually is made out of medal (copper 

or aluminum) because it has a much better conductivity with respect to the other two. This is a procedure 

at layout level, not at a design level. 

 

As for the wire connection, the vertical dimensions are fixed by the technology (thickness of the wire and 

of the dielectric), and we can change the width and the length (planar dimension) plus the separation 

between two nearby wires. To be honest, also the level of metal with which the connection is 

implemented can be changed (metal1, metal2, metal3, ecc.). This last choice has an effect in terms of 

capacitance. 

 

 

 

 

Source Source Drain 

Gate 
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PHYSICAL VIEW 

 

In the image it is represented an SRAM. Blue parts are metal wires that perform interconnections. The 

Wordline is an activation signal to activate the cell, and it is an interconnection implemented with 

polysilicon. 

 

Furthermore, the ground in the SRAM is brought to all the cells with an n diffusion interconnection line. 

This is not the best interconnection, because it is a semiconductor and its resistance is quite high with 

respect to metal. Moreover, and interconnection done with metal at higher level in the chip has a smaller 

capacitance than one closer to the substrate, because the distance is smaller, and the thickness of the 

dielectric is smaller → bigger parasitic capacitance. 

 

IMPACT OF INTERCONNECT PARASITICS 

Classes of parasitics: 

- Resistive 

- Capacitive 

- Inductive 

 

Interconnect parasitics: 

- Affect propagation delay. 

- Reduce reliability, because if we consider two wires that connect two circuits, between them we 

have dielectric and so a parasitic capacitive coupling. 

- Increase power consumption. 

 

In the image layers above the silicon are represented. The matrix in the middle is SiO2, so we have 

parasitic capacitances and resistances and inductances of the wires. Capacitances are between the wires 

and all the wires to the substrate ground. 
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Simplifications 

The inductance of the wire can be neglected because the impedance due to the inductance is negligible 

with respect to the resistance. 

As a second approximation, when the wire is short or the equivalent resistance of the driver is large with 

respect to the one of the wire, the resistive effect of the wire can be neglected. Exceptions are if the wire 

is very long, e.g. in the case of the clock line. 

Even if we neglect R and L, we still have a lot of parasitic capacitances. If the separation d between two 

wires is large, we can neglect the interwire capacitance. The same if two wires are close but run in parallel 

for a small distance. 

 

CAPACITANCE 

Let’s consider a wire like in the image. The designer can change the width and the length. 

The substrate acts as a ground plane and let H be the height of the wire, which is not negligible. The 

capacitance from the wire to ground is called parallel plate contribution, and it is proportional to the 

dielectric permittivity and directly proportional to the overlap area. Given the technology, H is a fixed 

parameter. Also t_di is a fixed parameter. 

 

Moreover, the side wall of the wire is not negligible and it may happen that we have a very small width 

but a big height, so the side wall has a larger area with respect to the bottom area, so we cannot use the 

parallel plate capacitor model, we need to add the contribution of the side wall. The side walls give a 

contribution called fringing contribution. 

 

Permittivity 

Why do we use SiO2 instead for instance of silicon nitride? Because the parasitic capacitance would be 

higher due to the dielectric permittivity. 
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FRINGING CAPACITANCE 

The parallelepiped can be split in a cylinder and another parallelepiped where just the bottom plate is 

considered. So we have a parallel plate contribution and a second contribution of the fringing capacitance. 

This contribution is a strong function of L and mildly dependently on H (diameter) and t_di. So it reduces 

with a mild function of t_di. 

If we consider the specific capacitance per unit length C’, it is Ctot/L. 

Aside from the length, the designer can change W and t_di (moving to an upper metal layer). The real 

dependance is on the first term, because we have W/t_di. So to reduce C’ we can use the minimum W 

possible allowed by the technology, and increase the oxide thickness, implementing the wire not in the 

bottom layer, but in a higher one. 

 

In the next image C’ is represented as a function of 

W/t_di. The parallel plate contribution is the straight 

line. For W/t_di = 1, the parallel plate contribution is 

epsilon_di, which is 1/3 pF/cm. 

Then the overall capacitance is represented by the 

other two curves, including the fringing contribution. 

If we increase H and t_di, the curve shifts down, but 

the dependance is mild for large W/t_di, for smaller 

value of this ratio, C’ is dominated by the fringing 

contribution. 
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So if we implement a wire we want not to work with a large W/t_di ratio, but where this ratio is small. 

This means that we have to decrease W and increase t_di using a higher level of meta (metal3, metal4 

and so on). 

 

INTERWIRE CAPACITANCE 

If I consider two wires that are running in parallel on the same layer, we have an interwire capacitance. 

In the image below we have the cross-section. Gray parts are the wires. X is bottom plate contribution. 

 

If we have a small overlap between the wires I have also a parallel plate contribution. I want to have a 

Cwire contribution summing all the contributions. The thing we can do to solve the problem is to 

decouple all the elements, and consider Cwire as the sum of independent contributions. 

If we do so, we are performing an overestimation. 

 

Impact of interwire capacitance 

 

Typically the dominant contribution is the capacitance of wires running in parallel on the same layer, 

that is the interwire capacitance. Let’s consider 4 wires at the same height with respect to the silicon 

substrate. Above them we have a large metal that acts as a ground plane; the distance between the wires 

and the top and bottom layers is 1um. 

In the graph we are representing C’ vs the CMOS technology node (we are scaling L, W and d). I’m 

plotting the total C’ considering a wire, e.g. the one in the middle. 

 

The parallel plate contribution decreases as the technology decreases, because W is decreasing and so the 

bottom area is decreasing for the same length. 

Instead, the interwire contribution increases as an hyperbola because I’m decreasing d, and wires are 

closer and closer. This suggests that if we have a critical wire and we want to minimize its Cwire, and the 

length cannot be changed, we can reduce W or push the wire away from the other wires (isolating the 

critical wire is the most important thing to do), implementing it in the top layer of metal. 

x 
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Once we have a technology, we can assess the fringing and parallel plate contributions between two wires 

according to the following table. 

 

Al in the column indicates the level of metal in which we are implementing the wire, while the row 

indicates the level we want to assess the capacitance with. In the white boxes we have the parallel plate 

capacitance per unit area (aF/um^s), while in the grey ones we have the fringing contribution per unit 

length (aF/um). Field is the substrate, active is the n+ or p+ region. 

For instance, if we consider a metal2, it is row Al2. Why polysilicon cannot be build above the n+ and 

p+ regions? If we implement polysilicon, below it we cannot implement n+ and p+ regions because it 

acts as a barrier, and the polysilicon is always implemented before the diffusion region, according to the 

self-aligned gate process. 

 

We should avoid the connection with polysilicon for sure because the resistivity is very large, but also 

because capacitances related to the polysilicon are very high compared to the metal, if we look at the 

table → better to use metal to convey a critical signa. 

 

Interwire capacitance assessment 

Let’s consider two wires on the same layer placed at the minimum distance allowed by the technology 

we are using. 

 

The difference in terms of numbers is due to the fact that polysilicon has a smaller H, so two contiguous 

wires have small sidewalls and so less capacitance. The upper level of metal has a larger contribution 

because typically the upper level has the largest height, almost a factor 2 with respect to the other layers. 

 

Let’s suppose that we want to bring the signal in output of the inverter far away in another portion of the 

chip. Let’s assess the capacitance of the wire with respect to the silicon layer. Since we are in metal1 and 

we are implementing over the substrate, we have to consider the field column and the metal1 row in the 

table. 

I have the Cpp contribution and two fringing contributions. 
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So we have 11fF to be added at the output of the inverter. 

Let’s now add a wire in metal2 with a width of 0.5um that runs above the metal1 wire for a length of 

50um. Let’s also add another wire in metal1 at the minimum distance from the original wire that faces 

the initial wire for the whole length. 

 

We can assess the interwire contributions of the metal1 wires. 

As for the one between metal1 and metal2, considering the overlapping area (100um is 2*50um): 

In the end Ctot is 25.4fF, summing the three contributions. 

 

RESISTANCE 

WIRE RESISTANCE 

In the R expression the designer can change L and W. The sheet resistance is the resistance of a wire with 

a length equal to the width, and once we have the technology, the sheet resistance ro/H is fixed. 

 

There are different materials with which the interconnection can be 

made. Typically aluminum is used because it’s very compatible with 

silicon dioxide, or copper in modern technology or for upper levels 

of metal. 
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Polycide gate mosfet 

Polysilicon alone is never used, also the gate of a transistor is never just implemented with PolyS, because 

it is very resistive. To increase its conductivity, typically it is covered with another material called 

silicides. Then the circuit is heated, and this material enters in the PolyS creating a compound called 

polycide. We can improve the conductivity by a factor of 10 with respect to just polysilicon alone. 

 

Sheet resistance 

In the table we have the materials we can use to implement an interconnection and their sheet resistance. 

 

INDUCTANCE 

At first order approximation it’s negligible. Let’s consider a wire at t_di from the ground plane, thickness 

H and width W, with length L. Let’s assess its inductance, with W and H negligible with respect to t_di, 

so that it is like having a line. 

 

The inductance per unit length is a mild function of the physical parameters of the wire, so it is more 

or less a constant. At first order approximation, a wire, whatever the material, has an inductance per 

length of 0.4 pH/um. 

 

If for the wire we consider a sheet resistance of 0.075 Ohm/square and a W = 1um. 

R = Rsheet * L/W. 

The resistance per unit length will be r = 0.075 Ohm/um. 
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Now I want to compare the two values of l and r. The absolute value of the inductance impedance is: 

|Zl| = 2*pi*f*l*L, where L is the length. The resistance is Rw = r*L. 

The frequency at which the impedance of the inductance is the same of the resistance is 30GHz. For 

smaller frequencies the resistance dominates, for higher ones the inductance dominates. Since in general 

the frequency of operation of circuits is smaller than 30GHz, the resistance dominates at the frequency 

of interest. 

 

INTERCONNECT MODELING 

There are some models we can use for the wire. The goal is to consider the wire as a circuit made of 

passive elements. 

 

Lumped C model 

Once the equivalent resistance (Req) of the system that drives the wire is much larger than the resistance 

of the wire, Rw resistance of the wire can be neglected, and the wire is just a capacitor Cw towards ground 

(of course given by the sum of all the previously seen contributions, Cpp, Cfr and a contribution that is 

not toward ground, but with a resistance to ground, that is the interwire contribution. The resistance that 

puts the interwire capacitance to ground is the static r_on resistance of the nMOS transistor in ohmic 

region, it is not Req) → lumped C model. 

The delay can be written with the classical formula. 

 

Lumped RC model 

Now Rw is comparable with Req. 

I have to model the wire with a RC network. Req and Cint represent the inverter, Rw and Cw the wire 

and Cl eventually the Cg of another inverter. The network has 2 poles because the Cl is in parallel with 

Cw (only two independent capacitors). 

 



92 
 

To assess the delay we can use the Elmore theorem. 

 

Elmore theorem 

It allows to assess the delay of a network with more than one pole. Let’s suppose to have a circuit like in 

the following image and we want to assess the delay in a certain point of the circuit, e.g. from point r to 

point i. 

To apply this theorem the circuit has to fulfill three conditions: 

1. One single input 

2. No feedback 

3. All capacitors are grounded. The capacitor must be all towards a fixed point. 

 

The Elmore theorem states that the delay can be assessed considering the shared path resistance for every 

capacitor of the circuit. The delay of a circuit involves the assessment of a time constant for each 

capacitor, and for each capacitor I have to consider its shared path resistance. Then all the time constants 

are summed. 

The shared path resistance is the resistance in common between the path from the input to the output 

and the path from the input to the considered capacitor. 

 

E.g., for C1 it’s R1 because the first one is R1 + R3 + Ri, and the second is R1, and so the one in common 

is R1. For C2 it’s again R1. For C3 it’s R1 + R3. For C4 is R1 + R3. Ci is R1 + R3 + Ri. 

Then I multiply the respective capacitance for the shared path resistance and I sum the time constants. 

 

Now we want to apply this theorem to the lumped RC model. 

 

We have the capacitance Cint and the sum of Cw and Cl, so in the Elmore computations we have just 

two contributions. 

Let’s rearrange highlighting the Req resistance. In this way it’s like if the current to charge Cint, Cw and 

Cl passes from Req, while Rw is responsible of the current contribution to Cw and Cl.  
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Let’s express it in a third way. Let’s consider the load capacitance equal to the gate capacitance, that is 

equal to Cint. The output is to the input of the load inverter, that is the inverter after the wire. 

 

Ln(2)*2*Req*Cint is 2*tau_p0, the delay of the inverter. Rw*Cw, apart from ln(2), it is the delay of the 

wire Tw. Req*Cw is the delay of a resistance that has to charge the capacitance of the wire, apart from 

the term ln(2), so we can call this term Tiw. Then the last term is Rw*Cint is Twi. 

 

I want to improve the delay of the wire Tw. Let’s suppose to have a wire driven by an inverter and to 

receive the signal at the far end of the wire. We need to compute the delay of the wire. We want to 

improve the Tw expression. 

 

The Elmore delay applied to a wire 

Let’s split the resistance of the wire Rw in N equal pieces R = Rw/N. The same for the capacitance of 

the wire Cw, divided in C = Cw/N capacitances. 

 

I want to assess the delay from Vin to Vn. For the first contribution the shared path resistance is R, for 

the second is 2*R, and so on. The overall resistance path is N*R. Let’s now factor out C and R at x. 

If N is much larger, N(N+1) is more or less N^2.  

Then I replug Rw and Cw in the expression → ln(2)*Rw*Cw/2. 

 

It seems that the delay is the same estimated with the lumped model for the wire (ln(2)*Rw*Cw), but 

with a factor /2 in addition. So the lumped model performs like an overestimation, assuming this one 

just found is the correct one. 

 

x 

y 
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If we express Rw as r, specific resistance per unit length, times the length of the wire, and the same for 

Cw with c. We get the expression y → the propagation delay depends quadratically on the length of the 

wire. 

 

If ideally we would neglect the resistance, using the model in theory the delay is 0. But what comes into 

play is the speed of light, because the signal travels with the speed of light. If the length is increased, we 

are doubling the propagation delay linearly. If we remove the resistance, the inductive effect comes into 

play, e.g. at PCB level where the wire resistance is negligible. 

 

Few considerations 

 

THE DISTRIBUTED MODEL 

We want to assess the delaSy from the input to the output. we divide the resistance in infinite pieces and 

each piece has a length of delta_L, with delta_L that tends to 0. x is the diffusion equation that is a 

differential equation with which we can assess the delay and write the expression of the voltage in every 

point of the wire as a function of time. 

The one in the red box is the solution of the expression. 

 

STEP RESPONSE 

L is the length of the wire and on the y axis we have the output voltage. The input step is from 0 to 2.5V. 

I’m interested in the point where I cut at half Vdd and the delay is 0.38*Rw*Cw according to the table. 

This is the value of time after which we reach Vdd/2, and the distributed model result is obtained solving 

the equation x of the previous image. With the rough distributed model ln(2)*Rw*Cw/2 I would get 

0.345, so it is a good approximation. 

 

The lumped RC model result gives a higher value, an overestimation. 

 

x 
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How can we cope with the overestimation of the lumped model? 

 

DISTRIBUTED-LIKE MODELS 

We can use two distributed-like models that give the same result. 

In the pi-model the capacitance is split in two elements, in the T-model it is the resistance that is split in 

two terms. 

The delay of the pi-model is ln(2) times the Elmore time constant, so since I have two capacitances I have 

to consider two terms. Ln(2)*[Cw/2 * 0 + Cw/2 * Rw] = ln(2)*Rw*Cw/2. 

The same reasoning can be done for the T-model, where the shared path resistance is Rw/2. 

 

Which model to use then? If the resistance is negligible we don’t care about the type of model, the wire 

is just a capacitance, we can neglect the resistance. If the resistance is not negligible, if the delay of the 

wire is not negligible with respect to the remaining term, better to use the T-model or pi-model, if instead 

it is negligible we can use any model because all the other terms in the delay formula are the same. 

 

Moreover, if we have a RC network, poles can be computed with the Middlebrook theorem. 
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The response to the step function will be an exponential increase (if the two poles are very split apart) 

and the Vdd/2 is crossed after a tau that is the same computed with the Elmore delay → the Elmore delay 

is a way to express the dominant time constant of a circuit. 

 

Applying the pi or T model 

X is the symbol to illustrate the effect of the distributed resistance and capacitance. Typically, r = 0.1 

Ohm/um and c = 100 aF/um for a Metal 1 in 0.25 um Intel CMOS process. 

 

The wire has been substituted with the T-model, and the symbol x identifies the distributed effect of the 

components. 

 

Since I have 3 capacitances, I have 3 contributions in the Elmore formula. Cg = Cint. 

Again, Rw = r*L and Cw = c*L. 

 

For the final expression we notice that we have constant terms in the delay tau_p plus a term that depends 

on the length (Cint*r*L), and a term proportional to the L^2. The term that depends on L^2 is the delay 

of the wire. This term is typically negligible, but if we consider long wires (mm or cm), it is no more 

negligible and we have to consider it. 

 

Which is the length for which the L^2 term is non negligible? We have the compare term y with 2*taup_0, 

and the result is 2.5 mm in our technology. At this length, Tinv = Tw. 

 

Let’s suppose to have a very long wire. How can we reduce the dependance on L^2? If we are able to 

split the wire into pieces and decouple them, we would get something like below. Between each piece I 

put an inverter, and then I can replace the wires and inverters with their models, e.g. the wire with its T-

model. Of course I need to split with Cg and voltage generator to model the inverters. 

I want to minimize the delay up to the input of the last inverter input. I have 3 pieces of wires. 

If we are splitting the wire in pieces, we are like cutting the square dependance, the sum of the three wires 

delays is smaller than the original delay because it is like: 

p 

x 

y 
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For instance the delay of the wires now is: ln(2)/2 * Cw/3 * Rw/3. If I sum the three delays, i.e. I multiply 

by 3, I have a factor of 3 of improvement in the delay, just for the wire. Of course, the drawback is that 

we are adding the inverter delay with respect to the original problem. 

Maybe there is an optimal number of pieces in which we can split the wire to optimize the delay. 

 

INSERTING BUFFERS IN A WIRE 

 

Let’s suppose that all the inverters have the same size S. The different parts are inverter-wire-gate cap of 

inverter, then inverter-wire-gate cap of the inverter and so on. Hence I have N equal parts. 

The difference is that in the original problem the wire length was L, now it is L/N. Aside from this, each 

piece is equal to the original problem. 

I want to minimize the delay from the input point to the input of the load final inverter. The propagation 

delay is the single delay of each piece multiplied by N. The Elmore delay constant is the same for each 

piece, that is the same of the whole original system with length L, but with the difference of L/N. 

 

We can rearrange expression x. 

Let’s now multiply by N the terms 

 

We have two fixed terms independent on N, then there is a term directly proportional to N and one other 

inversely proportional to N. 

 

x 

y 
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The terms that are independent on N are the mixed terms. It seems that the resistance of the inverter has 

to drive the overall capacitance of the wire in the term Cw*Req, and that the overall resistance of the 

wire has to drive the capacitance of an inverter. So it’s like the inverter has to drive all the N capacitances, 

hence the overall capacitance of the wire. Also for the other mixed term, we can split the wire in N pieces, 

in any case each piece has a small resistance but each piece of wire has to drive the inverter and its gate 

capacitance. However, these two terms depend on the size of the inverter even if they are independent 

on the number of pieces. What depends on the number of pieces is the delay of the single inverter and 

the delay of the wire. 

 

Equation y has in the sqrt the physical parameters of the technology we are using. Since Cint*Req is 

constant whatever the size, there is no reason to highlight the size. It is a number once chosen the 

technology. 

If I look at this expression, I notice we have Rw and Cw and the property of the inverter. This is the ratio 

between the wire delay and the propagation delay of the inverter, aside from factors. This ratio suggests 

the number of pieces we have the break the wire in. if the delay of the wire is larger than the intrinsic 

propagation of the inverter, cutting the wire is reasonable. 

 

For N = 2 we have the critical length of the wire (N = number of pieces), and we assess the minimum 

length for which it is worth to cut the wire and insert a buffer. The result is L = 7mm. 

 

OPTIMIZING THE SIZE OF THE BUFFERS 

Now we do the same analysis without highlighting N but the size S. Cint = s*Cint(1) and Req = Req(1)/s. 

The expression is the same as before. 

 

Now I want to optimize the propagation delay derivating the tau_p with respect to s. Before taking the 

derivative, better to perform the s multiplications and grouping the terms as before. 

 

x 



99 
 

Again, we have two constant terms, the inverter delay and the wire delay, but the mixed terms are size 

dependent, one increases, the other decreases, because the capacitance of the inverter scales with the size, 

and so also the resistance of the inverter. The optimum value of s that minimizes the delay is x of the 

previous image. 

The size of the inverter has the Req of the minimum size inverter at the numerator because the size that 

we have to choose for these inverters is related inversely to the Req of the minimum size inverter. The 

larger Req(1) the larger s we have to select to compensate for it, and the opposite is value for Cint(1). 

The same is true for Cw and Rw. The larger Cw, the larger the size we have to select. 

 

If we consider our reference technology, Req(1) is 11.6 kOhm, Cint(1) = 2 fF, then if c = 100 aF/um and r 

= 0.1 Ohm/um, s = 92, so a large inverter. 

If we have to drive inverters with size 92 we have to drive a large capacitance, so the way to proceed in 

input is to put a superbuffer to drive the first 92*Cint(1) capacitance. 

 

Practical meaning 

 

The size comes into play in Tiw and Twi.  

I get the same delay for all the 4 contributions. So the optimized delay for this problem is Nopt(8*tau_p0). 

Let’s plug Nopt. Once we have optimized the problem cutting the wire in N equal pieces, each optimized 

piece has a delay equal to 4 identical terms of 2*tau_p0, whatever the technology we choose, so there is 

a benefit in improving the technology because tau_p0 decreases. We cannot do better than this. So the 

delay is technology dependent (tau_p0), but the way in which it’s computed is the same. 

 

If we consider Nopt, then we have the expression x, that is proportional to the geometrical mean between 

the wire delay Tw and tau_p0, so the overall delay is technology dependent. 

So we start from a large delay of the wire and tau_p0 is small. We can improve the situation basically 

averaging the two delays of the wire and of the inverter if we cut the wire. 

 

Numerical example 

0.25 um CMOS with wire of L = 1 cm and W of the wire W = 1 um. It is implemented in metal 1. 

Let’s assess Cw and Rw. Cw is made of the parallel plate contribution times the bottom area of the wire 

plues the fringing contribution times the perimeter. 

x 
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Rw is the square resistance times the number of squares L/W. 

 

Then we normalize everything per the length. 

Now we want to minimize the delay and demonstrate that it is worth cutting the wire. The wire delay 

and inverter delays are: 

It is wort cutting the wire because the Tw >> Tinv. 

In fact, if we compute Nopt: 

The original problem delay with s = 1 and N = 1 has a dominant contribution that is not Tw = 286 ps or 

Tinv = 32 ps, but it is the Tiw = Req(1)*ln(2)*Cw = 8.6 ns (like if the inverter has to drive the overall 

capacitance). 

 

The model to use in this case is the lumped C model for the wire because the wire acts as a capacitance 

driven by the large resistance of the inverter. The resistance of the wire is completely negligible because 

it is more than a factor 10 smaller. 

 

Now we can act on the size s and N. Let’s start by acting on the size. 
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TAKING THE INDUCTANCE INTO ACCOUNT 
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IMPACT OF CMOS PROCESS SCALING ON WIRE PERFORMANCE 

In the first column we have the parameters of the wire. Last column to be neglected. Oxide thickness are 

all reduces, so it is like if for the same metal layer the distance from the oxide is reduced. 

As for the length we can distinguish between local wires, which are wires for which the length is reduced, 

and constant length wires for which the length remains the same. 

 

As for the capacitance C of the wire, we consider just the parallel plate contribution. It is proportional to 

the bottom area L*W divided by the oxide thickness t. Since all these dimensions scale down with S, in 

the end the C is reduced with S in local wires. 

 

The problem is however the resistance, which is inversely proportional to the cross-section. The resistance 

increases by a factor S in the local wires, but S^2 in the constant length wires. Since what counts is the 

product between C and R, in the constant length wires the delay increases quadratically. 

 

So with technology scaling we can implement much better transistors, but the wires are worsened. 

To address this problem, materials have been changed, switching to copper from aluminum, because 

copper has a smaller resistivity. The other step is to substitute the silicon dioxide with aerogels, a 

material that has an electrical permittivity similar to air. 

 

Constant resistance scaling. 
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Let’s consider epsilon_c = 1 through the table. In order to cope with the previous problem, the height of 

the height is kept constant. The aim of technology scaling was to keep the electric field constant, and this 

is the reason why all the dimensions were reduced. So let’s try to keep H constant. 

Implementing a thin wire very high and so very thin is a real problem with respect to a wire that is ‘flatter’. 

W and t are both reduced by a factor of S. 

 

The capacitance C is scaled with a factor /S in case of local wires and it remains constant in constant 

length wires, and so nothing has changed with respect to the previous case, because the Cpp is not 

influenced by the height of the wire. What changes is the resistance. Thus delay decreases for local wires 

(improvement, but the delay of the wire is not a matter because the wires are short and they act just like 

capacitor) and scales increasing linearly for constant length wires (wrt S^2 previously). 

 

If with technology scaling the wire is becoming thinner (higher), the interwire capacitance increases, so 

better not to put close two wires. Also the fringing contribution increases, because the side wall is bigger, 

but it is a smaller worsening than the interwire capacitance. 
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FC-CMOS LOGIC GATES 
 

COMBINATIONAL VS SEQUENTIAL 

Combinational are digital circuit where the output is a function of the input at a certain time. In case of 

sequential we have also a memory (logic gates + flipflops), so that the output is a function of the input at 

the previous time instants. Combinational will be divided in static and dynamic families. In static we 

have FC-CMOS, ratioed logic (divided in pseudo-NMOS logic and DCVSL) and pass-transistor. 

 

STATIC LOGIC GATES 

- At every point in time (except during the switching transients) each gate output is connected to 

either VDD or GND through a low impedance (resistance) path. At stead state there is always 

a pMOS from the output to Vdd or a nMOS from the output to ground. During transients it is 

possible to have both transistors on. 

- The output of the gates always assumes the value of the Boolean function implemented by the 

circuit (ignoring the transient effects during the switching periods). 

- Static gates are in contrast with dynamic ones, where the output can be a high impedance for one 

of the two logic values. 

 

IMPLEMENTING A FC-FCMOS GATE 

We always have a pull-up network made of pMOS and a pull-down network made of nMOS. If N is the 

fan-in, we have N pMOS and nMOS in the pull up and pull down networks. 

 

The pull up and pull down are complementary and cannot be on at the same time, otherwise a short 

circuit between Vdd and ground. 

 

 

 

 



105 
 

Recap 

Let’s consider a pMOS (active low device) whose source is to Vdd and the drain to output. Vgs = Vdd, 

so the pMOS can pull up the capacitor up to Vdd, so to create a direct path between the output and Vdd. 

During transient the transistor is always on since Vgs = Vdd and in the end it operates in ohmic with Vds 

= 0. 

Let’s use a nMOS to pull up a node. Its gate voltage is Vdd, and the output capacitor initially is 

discharged. At the beginning of the transient Vgs = Vdd, but during the transient it shrinks and the nMOS 

becomes a much worse current generator. As soon the threshold is passed, at Vdd – Vtn (where the 

threshold is affected by the body effect, so higher) we stop the transient, so we are not able to reach Vdd. 

This is the reason why not to use nMOS in PUN (pull up networks). 

 

The same reasoning can be done for PDN (pull down networks). 

 

The reasons for nMOS in PDN and pMOS in PUN are: 

1. High large swing, and we want the swing large for noise margins, so for reliability issues. 

2. Once the transient is over and we look in the drain, it is theoretically infinite, which is good → 

better output resistance. 

3. Body effect 

 

PARALLEL AND SERIES OF NMOS TRANSISTORS 

The nMOS is a very good element if we want to transfer a zero (0), but not a 1. Let’s put two nMOS in 

series and on the left side we have a signal X. A and B are logic 1, so the nMOS are on. So the node Y 

becomes equal to X. Since Y  = X if A*(and)B = 1 and Y = 0 if A*B = 1, it seems that  Y = (A*B)_bar. 

 

Let’s put them in parallel. Y = X if A +(or) B = 1. 

X = 0 → Y = 0 if A + B = 1. 
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PARALLEL AND SERIES OF PMOS TRANSISTORS 

pMOS are very effective in passing a logic 1. 

NB: A_bar*B_bar = (A+B)_bar and viceversa (De Morgan’s law) 

The series of pMOS is the PUN of an NOR gate. The parallel is the PUN of a NAND gate. 

 

COMPLEMENTARY CMOS LOGIC STYLE  

 

PUN and PDN are dual, i.e. nMOS transistor in series correspond to pMOS transistor in parallel, and 

viceversa. So if we have a PUN with pMOS in parallel, PDN is of nMOS in series. 

Moreover, FC-CMOS gates are always inverting. In fact, a nMOS is high for a high input signal, but it 

implements a PDN, so we have an inversion. The opposite for the pMOS. So to implement an AND gate 

we need to implement a NAND + Inverter. 

 

Example: NAND and NOR gates 

NAND: y = (A*B)_bar. NOR: y = (A+B)_bar. 
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Let’s focus on the PDN responsible for the 0. This happens if A = B = 1, so I put two nMOS transistors 

in series for the NAND that close at the same time. Then the PUN is automatically define as the dual of 

the PDN. 

 

Also for the NOR we can focus on the 0 and I implement a parallel connection in the PDN, then for the 

PUN again dual property. 

 

GENERIC FC-CMOS GATE 

 

Y = 0 if D = 1 or A = 1 and B or C = 1. This can be also seen as Y =  0 if D = 1 or AB = 1 or AC = 1. 

AB = 1 corresponds to A = B = 1, AC = 1 to A = C = 1. 

Once the PDN is identified, I have to identify the subnets SN. The dual property is valid also for bundle 

of transistors, e.g. SN1 and SN2 are in parallel, SN4 and SN3 are in series. Hence to design the PUN we 

have to switch the SN in parallel to in series and vice versa. 

 

For instance, let’s suppose to have D = 1. The output is 0, and the D in the middle of the PUN is off. 

As a second example to verify that the two networks are complementary, let’s suppose A = 0. The output 

is 0 and the PDN is deactivated. 

 

Properties of FC-CMOS logic 

FC-CMOS logic is very reliable, and Vol = 0V and Voh = Vdd whatever the sizing (ratioless logic). 

Depending on the relative sizing of PUN and PDN, the threshold voltage Vm can be put in the middle. 

If we can put Vm in the middle, we can theoretically equalize PD and PU times (tau_plh and tau_phl) as 

it was for the inverter. 

Moreover, the negligible static power consumption is a direct consequence of the fact that PDN and PUN 

are complementary, never active at the same time. 

 



108 
 

Example 

 

We have two approach to synthetize a function Y. Let’s use approach 1 and the SoP, encircling the 1 

groups in power of 2. 

Y = A_bar*B_bar + A_bar*B_bar. 

Then I apply the double bar so that I can use the De Morgan law. So A_bar becomes A and (B_bar + 

C_bar) becomes (BC). This approach is however a bit too complex. 

 

Let’s use the second approach and still SoP. 

Then we can move at transistor level. 

1. We synthetize the PDN: we put the Y = 0 and see which the combinations are to get Y = 0. In 

our case if A = 1 or BC = 1, that is B = C = 1. 

2. We identify the parallel or series in the PDN. 

3. Implement the PUN with the dual theorem. 

 

A mos and B + C mos are in parallel, then B and C are internally in series. So I use the dual in the PUN. 

 

NAND and NOR as basic gates 

If we can implement NAND and NOR but not other gates, we can start from NAND and NOR and 

implement any other Boolean function. NAND and NOR are a functionally complete set. 
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Bubble pushing theorem 

The negation pushed into the NOR gives a NAND with input negated and viceversa. 

  
SIZING OF AN FC-CMOS GATE 

In the inverter we had beta = 3 to have Vm = Vdd/2 and tau_phl more or less equal to tau_plh, so that 

the pMOS and nMOS networks are electrically equivalent. In the image, S = 1 because the nMOS 

transistor aspect ratio is the size. 

 

A similar reasoning can be applied to the 2 port NAND. The PDN has two transistors in series and I 

want it equal to the nMOS of the inverter in terms of current and equivalent resistance (electrically 

equivalent). Since I have two transistors in series, I have two resistances in series, and since the resistance 

is inversely proportional to the aspect ratio, if I increase the aspect ratio, Req decreases. So I increase the 

aspect ratios of the transistors by a factor 2 (two transistors in the series). 

 

The two transistors in series share one n+ well, so it is like if the electrons have to travel across a length 

that is 2L, but the width is the same → I need to increase the width and so the aspect ration to compensate 

the fact that they are in series. 

Instead, for the pMOS parallel, in the worst case the pull up is performed just by one single transistor. 

Then the best case scenario is with both on at the same time. So let’s size the pMOS with the same aspect 

ratio as in the inverter. So there is a difference only when we have a series of transistors. 

 

Now we can say that the classical inverter and the circuit on the right are equivalent in terms of current 

capabilities. So also the NAND gate has a size of 1 (size = current capability) as the inverter. 

 

If we had a size 2, in the inverter the nMOS aspect ratio is 2, the pMOS is 6. As for the NAND, 6, 6, 4, 

4. The equivalent size of two transistors n series is half the aspect ratio of the series. In parallel is twice 

the aspect ratio of one transistor. 
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The NAND gate on the right has a size of 1, because the equivalent size of the pull down path is 1. 

 

STATIC CHARACTERISTIC 

The idea is to have a similar property for the NAND gate than for the fully complementary CMOS 

inverter. 

The static characteristic is Vout vs Vin, but in the NAND gate we have 2 inputs. 

 

The static characteristic is something related to the noise margins, to reliability, to the fact that we have 

a transition in input and a transition in output. In this case we have 3 cases; for instance A = 1 and B that 

goes from 0 to 1. Then B = 1 and A that goes from 0 to 1. Then the case in which both A and B go to 

from 0 to 1 at the same time, it’s like inputs are connected together, so it is like having an inverter in this 

last case. 

 

If we look at the three characteristics, at first approximation the three are different, but all similar to the 

characteristic of an inverter. Since the characteristics are very close to 1.25 (Vm), it is a good sizing. 

When A and B are both transitioning we have a larger threshold. Let’s try to understand why the blue 

case is above the middle. 

If we consider the green and red curves, the circuit has A = 1 and B that goes from 0 to Vdd. A = 1 means 

that the pMOS is off and the two nMOS on, and the two nMOS can be considered as a single transistor 

turning on with size 1 (they are in series). The PUN instead is made of a transistor of size (3), so it is an 

inverter (1) – (3) and the inverter has beta 3. 

Instead, for the blue case the pMOS are both on before transitioning, so we have two transistors of size 3 

in parallel, hence it is like a unique transistor of size 6 (for the same length, two transistor in parallel is 

like having a larger transistor in terms of width) → inverter with beta factor 6 ((1) and (6)). 

Better than this we cannot do, we cannot have 3 characteristics overlapping. 

 

GENERIC FC-CMOS GATE SIZING 

 

I want to implement a gate with size 1, so the PUN has to have 3 in the worst case as strength and the 

PDN has to have 1 in the worst case, as in the image on the left. The function to implement is the one 

above. 

To make sure that in the worst case the size is 1, since A and B are in series, I have to size them with 

aspect ration of 2, so that the equivalent aspect ratio is 1. Thus in the worst case, considering all the 
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possible paths, all the, have (1), so the same equivalent resistance of the fully complementary CMOS 

inverter. 

For the PUN, since we want an equivalent resistance for the path Req(3), since D is sized with (6), C and 

B have both (12), so that they correspond to an equivalent transistor with (6). Thus in the end the 

equivalent aspect ration is (3) for every path. 

 

This is not the only possible sizing. If we start from the right PUN, we have C, B and D, we could have 

used the three transistors in series with (9). Hence the A must be sized with (4.5). 

 

The best solution is the one that minimizes the output capacitance Cint. The previous one is the best 

because the pMOS is smaller, and Cint is proportional to the width. 
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PROPAGATION DELAY IN THE NAND GATE 

 

Now between parenthesis we have the aspect ratio of the transistor, not the size of the inverter, because 

we are considering the pMOS transistor. So if I consider transistors, between parenthesis we have the 

aspect ratio, if I consider the inverter I put the size between parenthesis. Rp(3) is the equivalent resistance 

of the pMOS, which is 13 kOhm/2, where 13 kOhm is the Req of the nMOS. 

 

Let’s assess the worst case PU. It involves just one pMOS transistor. C is Cint, the intrinsic capacitance 

of the gate. Tau_pLH is the pull up time. 

As for the PD path, it involves two nMOS in series whose sum is 2*Rn, that is Rn(1). The worst case is 

when both are on. 

The problem is assessing the value of Cint. 

 

Cint assessment 

For a minimum size inverter of s = 1, Cint(1) = 2 fF. If we consider our gate, (3)||(3) + (2) + (2), since 

the length is the same for all the transistors, we can say that Cint is proportional to the aspect ratio, so for 

s = 2, Cint = 4 fF. 

On the output node we have two pMOS in parallel with twice the aspect ratio. So we take Cint(1) and we 

divide it by the sum of the aspect ratio of the minimum size inverter, then multiply by the transistors’ 

aspect ratios connected to the output. It is a mathematical proportion. 

 

Let’s assess Cint in the classical way. At the drain node, the specific capacitance is 2 fF/um. We have 3 

drains connected to the output in our case. 

 

However, we have the aspect ratios, not the widths. So I can rewrite it as the sum of the aspect ratios 

times the length, that is the same for all the transistors (it is not Cint(1)). 

 

In the end, for a NAND with size 1 Cint = 4 fF. So the resistance is the same, but the capacitance is 

twice. So the intrinsic propagation delay of the NAND is twice the one of the inverter. 
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Does the intrinsic propagation delay depend on the size of the NAND gate? 

The resistance is smaller, the capacitance is increased if we increase the size, so overall the intrinsic delay 

stays the same. 

 

Propagation delay 

The factor of 2 comes from the capacitance. 

 

So the intrinsic propagation delay (should be tau_p in the image) is two times larger due to the 

capacitance. What changes is the Cint, not the Req. 

The one below are the results of the simulations. 

 

For a NAND gate we can have different possibilities; in the first three cases we have the PU. The first 

case is with both inputs shortened to 1. The smaller PU time is smaller and reasonable because we have 

two pMOS together pulling up the output node. This is the best case. The third is the worst case, pulling 

up the output capacitor with just one transistor. 27 ps is similar to the rough analysis previously done 

(28ps). However, when I swap the inputs, and B is turned on (second case), the pull up takes a longer 

time, 38 ps. 

 

For the PD, if both A and B transition from 0 to 1, the delay can be either 40 ps or 32 ps. 

 

There is something we are neglecting to consider to understand why the simulations results are different 

from the pen and paper analysis. The problem is the parasitic capacitance Cp in the middle of the two 

nMOS transistors. 
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ASSESSING THE PARASITIC CAPACITANCE 

In a generic transistor, for the gate and drain we have C’ = 2fF/um. At the source, it is not so far from 

this value, so let’s also consider 2 fF/um at the source. We want to estimate with this approximation the 

Cp. 

Cp is proportional to the sum of the widths of the transistors connected to the node, so it is C’*[Wn + 

Wn]. Again I can express the width as sum of the aspect ratios multiplied by the same length. In the end 

we get 2 fF= Cp. Since Cint = 4 fF, we cannot neglect Cp. 

 

Better estimate for Cp 

 

The two nMOS transistors share the source-drain regions in the intermediate node. Furthermore, contact 

x means that we need a large area for the source and the drain, but it is not a node of interest, so I can 

remove the contact and if we look at the view of two nMOS in series, we can have a small junction 

removing the node (y), so that Cp can be reduced by a factor alpha (more or less alpha is 1/3). 

 

So Cp in the end is a bit smaller than 1 fF. Let’s re-assess the two worst case transitions. 

 

Worst-case transitions 

A_bar and B_bar indicate an active low signal. 

At the beginning B is 0, but the first nMOS A is on, so there is a connection with Cp. At t = 0, Cp is 0V 

because B nMOS was on, so Cp was discharged to ground. Once the pMOS B is on, we charge Cint and 

also Cp. Cp is charged up to Vdd-Vt, because then the nMOS A is off. 

 

We can draw an equivalent electrical model. 

 

 

x 

y 
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Equivalent electrical model for PUN 

 

Let’s apply the Elmore delay theorem for the delay. 

 

So the charging of Cp was the factor missing previously. 

 

We can now shift to the pull-down. It is the same as before. When A = 1 and B is turned on, we have the 

pull down, so Cint is discharged, but also Cp is discharged. Before the transition, Cp was charged to Vdd 

– Vt.  

 

Equivalent electrical model for PDN 

In the end I get 40 ps. 

Instead, the 32 ps in the simulations for the PD cannot be explained by the model, it comes from the fat 

that the series of two transistors is not actually equal to one single transistor with half the aspect ratio. 

The 40 ps delay is instead justified as above. 

 

Other transitions 

In the other transitions Cp is not coming into play because it is already discharged/charged. Actually, 

even if it is discharged, the intermediate node to which Cp is attached increases its voltage and then 

decreases it to accommodate the current to discharge Cint in the pull down transition. 
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GENERAL CASE 

In the image we have a n inputs NAND (fan-in = n). We want to compute the worst-case pull down. 

This happens when we turn on the transistor at the bottom of the PDN, and the other ones are already 

on, while the pMOS are already off except for the last one on the right, which is turned off (x). 

 

Let’s assess all the capacitances involved. The NAND has a size of 1. 

I want to size the NAND gate with n inputs with S = 1. This is made by a lot of pMOS in parallel, and n 

nMOS transistors in series. For the worst case PDN we want to have the equivalent sizes of an inverter 

(3) – (1). So all the pMOS will have an aspect ratio of (3), and the nMOS of (n), so that their equivalent 

resistance is Req(1). As for Cint, it is n times Cint(1), so n*2 fF. 

 

Then I have the intermediate nodes, whose capacitances can come into play in the transitions. They are 

proportional to alpha, n and Cint(1), with alpha much smaller than 1. 

As for the first Cp of the pile, we can compute it as: 

This capacitance can be reduced because we can share the junctions, so Cp is smaller than this computed 

value (k << 1). 

Worst case PD path 

The network is sketched in the previous slide. The resistances are all equal and equal to Rn(1)/n, 13 

kOhm/n. 

The model is complex because it involves n capacitances. Y is the classical contribution of the current 

that passes through all the resistances to discharge Cint at the output. 

Then we have the contribution of the capacitance z.  

I can rewrite it grouping ln(2)*Rn(1)*Cint(1), which is actually tau_p0 (16ps). 

x 

y 

z 

z 
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Tau_p0*n is a term that increases linearly with n and it is expected because what changes between an 

inverter and a NAND for the same size is the output capacitance. In the NAND, the Co is n times the 

Cint(1) of the minimum size inverter. So we expect a larger intrinsic propagation delay because the output 

capacitance is greater. 

 

Then we have also another term, x, which cannot be neglected because it is proportional to n^2. It is 

hence a quadratic dependance in the worst case. For a small number of inputs this term can be neglected 

because alpha is much smaller than 1, but once we implement a NAND with a lot of inputs it cannot be 

neglect. This is why we will never see NAND gates or NOR gates with a number of inputs greater than 

4. 

 

In the worst case, the propagation delay is linear with the fan in FI (FI = n), then quadratically depends 

on n and if we have a load capacitor we also have a third term which depends on the fanout. 

 

DELAY AS A FUNCTION OF THE FAN-IN 

In the plot, we are considering the intrinsic delay in the worst case to show its dependance on the fan-in. 

For a small number of inputs we have ae straight line, which then becomes a parabola, with a quadratic 

dependance on the fan-in. So for a small number of inputs the delay dependence is linear with n. 

The green curve is wrong. In the worst case we don’t have a linear relationship for the PU transition, also 

it has a quadratic dependance as for tau_pHL. 
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Worst case PU path 

So the tau_pLH trend is quadratic with n^2. 

 

CLEVER DESIGN – TRANSISTOR ORDERING 

 

Let’s consider a 3 inputs NAND gate, and the 3 inputs are not equivalent, e.g. the path corresponding to 

C has some delay before transitioning, it is the last input to reach the NAND. Where is the best place to 

put the input C? 

We can consider two cases. In terms of nMOS transistors, in one case C is at the bottom, in the other 

case connected to the top transistor. 

In the left case, before the transition of C occurs all the parasitic capacitances are charged, because the 

other nMOS are already on. Then I have the transition and all the capacitances must be discharged. 

In the right case, the parasitic capacitances are already discharged and once the transition of C occurs, 

only Cl has to be discharged, so this case is the better. So it is better to connect the slowest signal to the 

transistor closer to the output node. 

 

 

 

 

 

 

 

3 
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Large fan-in gates 

I want to implement the AND function F. We can use a NAND gate with 8 inputs followed by an inverter 

or use simpler gates with less inputs. 

 

Which is the best circuit to implement an AND function? 

The one with a very large fan-in is not the best one because it has 8 inputs and so it involves a delay that 

is not linear with the number of inputs. 

In the left case we have a lot of gates in cascade, while on the right more inputs but less in series, so they 

seem almost equivalent. The difference is when driving a load, having more stages in cascade it’s easier 

to drive a load. So for small Cl it is better the solution on the right, for high Cl the solution on the left. 

 

Once the load is given, how can we size the gates in the path? 

 

Sizing of a gate 

 

The first is the NOT, then the NAND and NOR. 

Two gates with the same size have the same equivalent resistance for the worst case path. The inverter 

(NOT) has a size s. The one in the image is the sizing to have an equivalent resistance. For instance, the 

NOT has the PDN with size s because in the worst case only one transistor nMOS is on, so it has to have 

the same size of the inverter. 

 

What changes between the three implementations is the overall output and input capacitance. Once the 

length is fixed, the capacitance is proportional to the width (in reality to the aspect ratio), and so the input 

capacitance of the NAND (5s) is larger than the inverter. It is even larger for the NOR. 

As for the output capacitance, e.g. in the case of the NOR, it is 8s (6s + s + s), while in the inverter it is 

4s, so a factor 2 greater. 

 

From now on we will neglect the internal parasitic capacitances, so the analysis is valid for small fan-in 

gates. 
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LOGICAL EFFORT AND ELECTRICAL EFFORT 

We want to compare a generic FC-CMOS gate with the reference inverter. 

 

Intrinsic delay factor 

p is the ratio between the capacitance at the output of a generic gate and the capacitance at the output of 

the inverter, for the same size. For a NAND and NOR gate, p corresponds to the fan-in, and the Cint to 

put in the formula is not the Cint of the inverter, obviously, but of the gate itself. Always, in a gate, p > 

1. It quantifies the complexity of the gate at the output node, compared to the inverter. 

  

Logical effort 

Ratio between the gate capacitance of the FC-CMOS gate and the one of the inverter for the same size. 

For an inverter of s = 1, Cg(1) = Cint(1) = 2 fF. For a NAND of s = 1, the ratio is 5/4 (5s of the nand 

and 4s for the inverter). It quantifies the complexity of the gate at the input, compared to the inverter. 

 

Electrical effort 

It is the fanout, ratio between the external capacitance and the gate capacitance. If I increase the size, the 

fanout decreases linearly with s, because Cg is proportional to the size also in generic gates. 

 

Example 

 

For the NOR, g = 7/4 because Cg = C’*[Wp + Wn] = C’*Lmin*(6+1) = 7C’Lmin, and in the inverter 

Cg(1) = L(3+1)C’. 
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PROPAGATION DELAY OF A GENERIC GATE  

Let’s assess the delay of a NAND gate of 3 inputs and let’s asses p and g to compare it with a reference 

inverter ((3), (1)). To have the same size, all the transistors of the NAND have an aspect ratio of 3.   

 

Connected to the output node we have 4 transistors with aspect ratio of 3, while in 

the reference inverter a transistor of aspect ratio 3 (pMOS) and one 1 (nMOS). 

The Cint in output of the gate is the Cint(1) (output of the inverter) times the sum 

of the aspect ratio of the gate divided by the sum of the aspect ratio of the inverter. 

 

So p = 3 = fan-in, and g = 6/4 = 1.5 (we have to consider one input for the 

calculations, e.g. A. For NAND and NOR the g is the same regardless the input, for other gates we might 

have different logical efforts depending on the input). 

 

 

Let’s generalize the result, for a generic gate of size s for which I want to assess the delay tau_p from A 

to y. 

 

The resistance scales down with the size with respect to size (1), but also the Cint increases with s. 

According to x, if we have an external load and we want to decrease the propagation delay, we can act 

on the size.  

We can look at y and, if we increase s, the delay decreases up to the point where the delay is tau_p0*p, 

so there is a dependance of the delay on the size, increasing the size we decrease the delay. 

 

x 

y 
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Then we change sCint(1) = gamma*s*Cg(1). Then I multiply numerator and denominator by Cg so that 

we can highlight the fanout = Cext/Cg. Then also Cg/sCg(1) is the logical effort. 

 

The delay doesn’t depend on the logical effort of the gate g, so the dependance in the formula is fake, in 

fact if we express f, the g cancels out. 

However, the expression above is useful when we want to minimize the delay of a chain of gates. 

 

INTRINSIC DELAY AND EFFORT DELAY 

The following expression looses the physical meaning of the delay, which is ln(2)*Req*(Cint + Cext). In 

the end, increasing the size we can decrease the propagation delay, the size is the only parameter on 

which we can act. 

 

 

OPTIMIZING THE GATE SIZE 
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Inverter chain sizing 

The delay is minimized if all the added inverters have the same fanout if N is fixed. If N can be changed, 

we have to select N so that f_opt = 3.6 for all the inverters. 

 

Chain of generic gates 

 

We can define a critical path, which is the path that corresponds to the largest delay, that in our case is 

from A to Y. The other delays are smaller. Once we have a path, we define the delay as the sum of the 

ideal delays. 

 

For each gate I have to assess p and g. Of course, for the inverters p = g = 1. As done for the inverter 

chain, we can define a path fanout F. Now, since we deal with more complex gates, we can also consider 

the path logical effort, product of the logical efforts of all the gates in the chain. Multiplying F and G we 

get the path effort H. 

 

Once we have H, we can easily verify that the delay of the critical path delay is minimized if we size 

the gates so that each gate has the same stage effort f*g. 

It is a result similar to the inverter chain theory, the only thing that changes is the addition of the path 

logical effort. 
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Design flow 

 

1. F = Cl/Cg,1 

2. G = prod_j(g_j) 

3. H = FG 

4. h_opt = sqrt_N(H) 

 

So each stage has the same h_opt = f*g. This is not equal to say that each stage has the same delay, what 

it’s in common between the stages is the effort delay, extrinsic delay. The intrinsic  delay depends on the 

gate we are considering. 

 

Example of optimization 

F = Cl/Cg,1 = 1000. 

 

Let’s assess the delay of the circuit before the optimization, with s1, s2, s3 and s4 = 1. 
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Let’s use the formula that involves the fanout (f_i = fanout of the i-th stage). 

For the 3-input NAND p = 3, for the 2 input NOR it is 2. 

Now we have to consider the gate capacitance of the NAND, that is the load capacitance for the inverter, 

and the Cg of the inverter. The gate capacitance of the ANNAD is g_2*Cg(1). As for the delay of the 

NAND, the gate capacitance of the NOR is g_3*Cg(1), and it is the load capacitance of the NAND. In 

this case g_2 cancels out. 

The largest delay in this chain is the last one, overwhelming the other contributions. 

Let’s try to minimize this delay. 

The steps to be performed are in the next image. 

 

 

 

 

 

 

We can rewrite the situation. The unknowns of the problem are s2, s3 and s4. In order to minimize the 

delay from A to Y each stage must have an effort h = f*g = 7.16. The size is inside the term f. 

 

For the first inverter s1, h = f_1 = 7.16, which is the ratio of two capacitances. In fact at the input of the 

NAND the C is s2*g_2*Cg(1). 

Let’s move to h_2. g_2 is 6/4. Capacitance in input of the NOR is g3*s3*Cint(1). 

x 
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We get s3 = 19.4. Then we have the final inverter. 

Finally, s4 = 140. 

Now all the gates are sized, and I can use the last gate to assess if the calculations are correct. 

The overall propagation delay is: 

All the delay contributions have in common the effort delay. 

 

What can we do to increase the number of stages without changing the function Y? 

The only element with logical effort 1 is the inverter. If we add a couple of inverters in series we are not 

changing the function, nor F nor G, so H stays the same. If we look at formula x, h_opt = sqrt_N(H), so 

maybe if we increase N and H is the same, we get a benefit in terms of delay. 

 

Optimum number of stages 

 

If we add inverters in the circuit, in even number, we are not changing function nor path effort, because 

an inverter has g = 1, we are acting on N. 

So we minimize the delay if we can change the number of stages so that we get a stage effort of 3.6, i.e. 

the product of the fanout and logical effort. The formula is x. 

 

x 
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Buffering a chain adding inverters 

 

Since Nopt = 6.1, we need to add a couple of inverters, which must be properly sized so that each stage 

has the effort h_opt. Can we do better than this with this heavy load? 

7.16 is much larger than 3.6, which is the best stage effort for gamma = 1. So increasing the number of 

stages we can improve h_opt and further minimize the propagation delay. 

In any case, the product of all the stage efforts has to be H, that is in the h_opt case, (h_opt)^N = H. 

From this we can get the optimum number of stages Nopt. 

 

Which is the stage effort that minimizes the propagation delay? More or less 3.6 with 6.1 stages, but we 

have to choose an integer number of stages. So Nopt = 6, and h = 3.71. 

The question is where to put the couple of inverters. We can put them wherever we want, but the best 

solution is to put them at the end of the chain. 

Indeed, when we size the circuit the size increases progressively from the input to the output of the chain, 

so the last stages are larger, so better to have simpler gates in the final positions and more complex 

gates at the beginning.  

 

Now we are left with the sizing of the circuit. To do so, we have to consider that each stage must have 

the stage effort of h_opt. Let’s start with the first gate. 

As for s2, h2 = f2*g2 = h_opt = 3.71. 

f2 = (s3*g3*Cg(1))/(s2*g2*Cg(1)) and the only unknown is s3 → s3 = 5.24. 

 

 

 

 

 



128 
 

 

The ratio between two contiguous gates’ sizes is 3.71. 

 

So far we considered a chain of gates, but we might add branches 

 

ADDING BRANCHING EFFORT 

 

Let’s consider a simple branching where the branch has the same gate than in the main path and with the 

same size. This branching can be treated defining for the driving gate a branching factor. The driving gate 

is the inverter s1 in their case, which has to drive two equal paths. 

The branching effort is b, that in the case of s1 is b1. Basically it indicates how many capacitances we are 

adding with the branching with respect to the case without branching. 

 

If we have a third path in parallel, still with size s2, the branching effort is 3, because we are driving 3 

equal capacitances. The on path is the critical path from the input to the output where we want to 

minimize the delay. In this case the branching effort corresponds to the number of gates we are driving 

in parallel, because they have the same size. 

 

In general, considering the branching effort, the propagation delay can be written as: 

That, in case of branching, adds the term b at the numerator → f*g*b, where f is the fanout along the path 

and b is the branching effort. 

f*b is exactly, for a gate, the overall external capacitance divided by the Cg of the gate we are considering, 

so it is the real fanout, that has been decomposed in fanout along the path f and branching effort b. 
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Example – 1 

 

We have a minimum size inverter that drives, in the reference technology of 0.25um from INTEL, two 

paths with two inverters of size s2. The orange one is the path I want to minimize. 

In case of multiple nodes along the branch, we can define a path branching effort, which is the product 

of all the branching efforts of all the gates involved in the branching. In our case we have just b1 = 2. 

 

F = Cl/Cg,1 = 50 (ratio of capacitances in the critical path) 

G = g1*g2 = 1 

B = b1 = 2 (in this case only of the first inverter that drives two equal paths) 

h_opt = 10 (optimum stage effort) 

 

Inverters x both belong to the critical path, so they must have h1 = h2 = 10. The first inverter has a stage 

effort h1 = f1*b1 = 2*s2*Cg(1)/Cg(1) = 2*s2, because the Cg of the second inverter is s2*Cg(1). So s2 = 

5. 

 

Hence the two inverters in the fork have the same size of 5. Let’s now assess the propagation delay of the 

optimized path. The propagation delay of the first inverter is the one of an inverter that drives two 

inverters of size 5, so tau_1 = 11*tau_p0. 

The propagation delay of the second stage is 11*tau_p0, so in this case it happens that they have the same 

delay, but it is only because we are using inverters. 

 

Let’s remove the upper branch. With respect to 22*tau_p0 the delay decreases because we are like 

removing a capacitance, tau1 = 6*tau_p0, and the overall delay is 17*tau_p0. 

If we could change s2, still having 2 inverters, 5 is not the best size, but 7 = sqrt(50). Now tau1 = 8*tau_p0 

and also the second inverter, so overall tau_p = 16*tau_p0. 

 

 

 

 

 

 

 

 

 

x 

x 
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Example – 2 

 

Longest path is from A to B, that is the critical one. First branch has b1 = 2, and the second one b2 = 3. 

For the NAND, p = 2 and g = 5/4 if the size is (3);(2). Hence G = (5/4)^3, because we have three NANDs 

in series. Every stage in the critical path must have a stage effort of h_opt to minimize the propagation 

delay of the critical path. 

 

f1 = s2/s1, and s2 = (s1*h_opt)/(b1*g1), and we get s2 = 1.9. 

The same procedure has to be repeated for the second gate. 

 

The gates in the critical paths have in common the effort delay, and moreover they are equal, so the three 

gates have the same delay. The delay of each gate is tau_p0*(2+h_opt) = 6.7*tau_p0. 

The final delay of 20.1*tau_p0 of the critical path is not the optimal one, because h_opt is 4.7 and not 

3.6, so we can add buffers in the chain to minimize the delay. Since 4.7 is close to 3.6, let’s try adding 

two inverters. 

With 5 gates, h_opt = sqrt_5(H) = 2.5. 

 

If I size the gates in the path now, I get a delay that is: 
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In the end I get 20.5*tau_p0, so I don’t optimize the delay. This because 4.7 was already quite close to 

3.6. 

 

Let’s suppose we can add just one inverter, and not a couple. h_opt = sqrt_4(H) = 3.2. Now we have a 

benefit. 

 

With a final result of 19.8*tau_p0, which is quite close to 20.1*tau_p0. So better not to use it to save area 

and power consumption. 
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POWER CONSUMPTION IN A GENERIC GATE 

 

The product of the switching activity and bitrate f_ck is the pullup frequency. We want to extend this 

theory to a FC-CMOS gate. 

 

NOR GATE 

 

I want to assess the power consumption spent by the PS generator. The output is typically 0 (see truth 

table) and we can try to assess the power consumption assuming equiprobable input signals and an output 

load C. 

 

Alpha_sw = P(0)*P(1) = ¾ * ¼ = 3/16. 

 

For the same capacitance, it seems that the inverter has a larger power consumption than the NOR, 

because the switching activity is bigger. 

 

NAND GATE 

The output is more likely 1 than 0. Again, if we consider an equiprobable signals in output to A and B, 

the 4 cases are equiprobable at the output. The switching activity is still 3/16, so the power consumption 

is smaller than in the inverter case for the same load capacitance. 

Typically, the more complex the function the smaller the switching activity. 
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Let’s consider the case of a 3 inputs NAND gate. 

 

This switching activity has been computed assuming equiprobable signals, so P(0) and P(1) are 

uncorrelated. 

 

RECONVERGENT FAN-OUT 

We have two cases with inputs connected in different manners. 

 

If we follow the analysis carried on so far, considering equiprobable signals (random signals), we can 

focus on the circuit on the left. In output of the AND, P(0) = ¾ and P(1) = ¼, so switching activity is 

3/16 as before. 
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If we consider the circuit on the left, A is equiprobable, but B is the complement of C, so the output of 

the AND is always 0, so the switching activity is 0 because P(1) = 0. This is a condition of reconvergent 

fanout. 

 

GLITCH IN STATIC CMOS LOGIC 

 

It is a form of power consumption that can occur in complex circuit that is not taken into account in the 

classical P computation based on the switching activity. Inputs A and B are far from the output with 

respect to the input C. We are in presence of a chain. 

Let’s take A = 1, B = 0, so X = 0, and C = 1 → Z = 0. Now A transition to 0 and also C, but they are in 

two different points of the circuit, so they have different delays. Let’s suppose that tau_p1 = tau_p2 for 

the two gates. We can say that after tau_p1 we have a transition in output of the first gate, so X has 

transitioned from low to high. In the mean time, in reality at t = 0, also C has transitioned, and after a 

delay tau_p2 the Z transitions to low. 

 

The logic function implemented by the network is: 

Let’s consider the transition 101 to 000. At the beginning, x, I have Z = 0 in output, as well as at y, that 

has A = B = C = 0. At z, X goes to 1, C is already 0. 

Due to the different propagation delay of the two different paths, even if after the glitch the output is Z = 

0 as expected, I have a glitch, that is not predicted by the logical function. In fact, from the logical 

standpoint the output has never to transition, but it has indeed a glitch, which, if we consider the final 

capacitance, charges the capacitance, with an charge spent that is C*Vdd. Then it is eventually 

discharged. 

This glitch power consumption occurs typically when we have chains of gates with inputs that can have 

different propagation delays. 

 

To equalize the delay, we can think of adding gates, e.g. a couple of inverters, in the path of the C input. 

In this case the two inputs of the final NOR gate transition simultaneously, so the output will always be 

0. However, this solution has a higher area and power consumption. 

 

x 

y 

z 
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Another possible solution is to slow down the second NOR, having hence 

tau_p2 > tau_p1. So the tau_p1 is the same, and the second NOR takes a lot 

of time to transition, so X has the time to change and the glitch is almost null. 

 

If we suppose that the peak voltage reached by the glitch is delta(V), the charge 

spent by the power supply generator is no more C*Vdd but C*delta(V), so the energy  

Is C*delta(V)*Vdd. If this is repeated with a frequency f and delta(V) is small, this consumption is 

decreased. 

 

Furthermore, the glitch is a logical mistake, because from a logical standpoint the signal Z should remain 

0 all the time, while here it goes to almost 1 for a while. 

 

Example of additional power consumption 

 

Again, we have a slow path and a fast one. At t = 0 the signal on the fast path changes from 0 to 1. 

The outputs in all the odd positions transition to 0, the ones in even positions remain 1. Node out1 and 

out3 and so on take some time to transition with respect to the fast node. Out1 transitions with a delay 

that is tau_p across the first gate. 

 

As for out2, from a logical standpoint it has to remain 1. If we depict the situation 

for the second NAND, one input transitions immediately, the other one takes some 

time. For a brief amount of time the signals are both 1 in input of the NAND due to 

the different delays, so the PDN is activated, and the output is discharged. This is 

something unwanted. However then the output goes back to 1. 

 

The thing is, as soon as we move in the gate, the glitch is increasing due to the larger delay we are 

accumulating. Since we have a pull down for a short time and then a pull up, this is related to power 

consumption. 

 

Tau_p1 
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Output 7 vs output 1 

We start from 2.5V, at a certain point the output reaches 2.7V. This is due to charge injection, since we 

have a forward path from the input to the output with the Cgd capacitances. On a fast transition, the 

capacitance behaves as a short, so the signal passes to the output due to the short of Cgd, but then as soon 

as we have the plateau of the transition it is the mosfet that acts. This is due to the fact that we are using 

real switches with parasitic capacitances. 

 

As a last remark, the out7 has also a sort of bouncing in the middle, a problem 

that worsens from out1 to out7. This because out6 is not always 1, but it has a 

glitch. So the pMOS in the PUN turns partially on for a small period of time, and 

this is a conflict between the pull down and pull up network. So we have 

transconduction current. So the bump is in part due to the fact that we are turning 

on the pMOS transistor in the PUN, and in part due to the fact that if we decrease 

the gate voltage of a transistor the Req of the transistor increases (it draws less 

current), so the PDN is becoming more resistive, and so we are slowing down the pull down. But then 

the out6 voltage goes up again and the situation is restored, the PDN is fast again. 

 

PRINCIPLES FOR POWER REDUCTION 

 

Glitches reduction 

The best way to reduce glitches is to 

implement a tree structure. In this case 

the propagation delay for all the paths 

is the same, so we can reduce the 

possibility of glitches because of the 

same propagation delays. 
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RATIOED LOGIC 
 

The FC-CMOS logic is ratioless, meaning that the static properties of the logic don’t depend on the sizing 

of the pMOS and nMOS, Voh = Vdd and Vol = 0V whatever the sizing, only Vm is a function of the beta 

factor. 

 

 

The big issue in FC-CMOS logic is the usage of the pMOS transistor, which are big to balance the 

different process transconductance with respect to the nMOS. If they are bigger, their capacitance is larger 

and so the propagation delay is bigger. The objective of ratioed logics is to implement smaller and faster 

gates to avoid bulky transistors. 

 

PSEUDO NMOS LOGIC 

 

In a pseudo nMOS logic the PUN changes, with just one single pMOS transistors, whose gate is to 

ground, so it is always on. 

This has the benefit that the input is connected just to nMOS transistors, so the capacitance is reduced 

both at the input and the output. This leads to a circuit with smaller area also. 

 

Let’s suppose we want to implement a two inputs NAND gate 

with a pseudo nMOS approach. The PDN is the same of the FC-

CMOS NAND, and the PUN is with a single pMOS that can be 

minimum size (1). 

This is very good in terms of parasitic capacitances. The benefit 

is even greater in the case of a NOR gate. The one in the image 

is the 4 input NOR gate. In fact, we are avoiding the large size 

(12) pMOS of the FC-CMOS 4 input NOR. 
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In order to analyze the properties of the logic, let’s consider the pseudo nMOS inverter as the reference 

to analyze the properties of this logics. 

 

Vol > 0 in pseudo nMOS, while in FC-CMOS it is exactly 0. Instead, Voh = Vdd. We know that Vol = 

f(Voh) and Voh = f(Vol). 

Let’s suppose that Vin = Vol < Vtn, threshold voltage of the nMOS. If so, the nMOS is off, and also the 

current Ip in the pMOS is 0 (static current at steady state). So to have this, Vds,p = 0V. So Voh = Vdd. 

 

Let’s consider now Voh = Vin = Vdd. So we have a current from Vdd to ground. This means that the 

nominal output voltage corresponding to a logic 0 is not 0V, otherwise there would be no current in the 

nMOS, In = 0. So the nominal output voltage is not 0V. 

 

The only way to keep the output voltage close to ground, if we suppose to have a large pMOS and a 

smaller nMOS, the pMOS is larger and wants to draw a large amount of current, while the nMOS is 

smaller and wants to draw a smaller amount of current, so the only possibility is that the output voltage 

increases pushing in ohmic region the pMOS transistor. So to have the output voltage close to ground, 

the nMOS must be large and the pMOS off, so that the nMOS is pushed in ohmic. 

 

So the nMOS must be sized larger (i.e. more conductive) than the pMOS transistor. Moreover, when the 

input voltage is high, the output voltage is not zero (worsening of the noise margins), so we have a static 

power consumption, a static current. It is not a subthreshold current. 

 

Another drawback is that, to balance drawbacks 1 and 2, the nMOS must be sized bigger than the pMOS, 

so eventually the pMOS is minimum size and the nMOS is bigger → asymmetric propagation delays, 

tau_pLH >> tau_pHL. 

Another drawback from this analysis is that there is a trade off between static and dynamic performances. 

If we want to decrease the pull up time we need to increase the pMOS size, but at the same time the 

power consumption is increased and also Vol, so the reliability is worsened. 

 

VTC of pseudo nMOS inverter 

Let’s suppose we can change the pMOS aspect ratio, and the nMOS is fixed with a size of 1. (W/L)p = 

0.5 can be obtained with an increased length, not using the minimum one (L = 0.5 um and W = 0.25 

um). Moreover, the table stops at (W/L)p = 2 because if we further increase the aspect ratio, Vol increases 

further and further up to the point where it is bigger than Vdd/2, and we don’t have an inverter anymore. 
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Increasing the pMOS aspect ratio the nominal output voltage Vol increases. Plow = Vdd*Ids when Vout 

= Vol, static power consumption. So increasing the dimension of the pMOS leads to an increase in the 

static power consumption, while in a FC-CMOS gate it is 0W. 

 

As for the propagation delays, the propagation delay from low to high becomes smaller because the 

pMOS size is increased. 

For the high to low transition we have the nMOS transistor involved, but its size is fixed. Why is the 

propagation delay increasing? This because if we increase the pMOS size we are increasing the output 

capacitance, but there is also another reason. The pMOS transistor is on, so the current that discharges 

the capacitor through the nMOS is the current of the nMOS minus the one of the pMOS, which is on, 

according to the KCL. So the current that discharges the output capacitor is not the one of the nMOS, 

but we are reducing the effective current discharging the output capacitor → hampering effect. 

This effect can be seen as an increase of the pull-down resistance with respect to the equivalent resistance 

of the pMOS. 

 

Low output voltage and static power 

Let’s consider Voh = Vdd at the input of the nMOS; the output goes to logical “0”. Both transistors are 

o, and Ip = In at steady state. If Vol is close to ground (not properly zero), the nMOS is ohmic, and the 

pMOS is in velocity saturation (Vds almost Vdd). In the analysis it is neglected the channel modulation 

effect (the term with 1+ lambda*Vds). 
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The unknown is Vol, which is close to ground. Because of this, Vol^2/2 can be neglected and we get a 

linear equation with respect to Vol. Since also Vdsat^2/2 is small, we can neglect it, and furthermore Vtp 

almost Vtn. 

In the end Vol is a function of the beta factor, so to have a small output voltage the pMOS must be smaller 

than the nMOS, we want beta small to have Vol close to ground. For beta = 1, Vdsat is 1V, and kp/kn = 

1/3.5, so Vol = 290mV. 

So Vol is a function of the beta factor, so of the relative size of the pMOS and nMOS transistors → ratioed 

logic. Moreover in the low output state we have a power consumption, and the current is fixed and 

depends on the aspect ratio of the pMOS if we neglect the channel modulation effect. Increasing the 

pMOS aspect ratio leads to an increase in the current and in the static power consumption Plow. This 

is another reason to keep (W/L)p small. 

 

Propagation delay  

It is asymmetric if the pMOS is smaller than the nMOS one, so its driving capabilities are smaller. We 

cannot counterbalance the smaller process transconductance increasing the size, and this leads to a bigger 

Req,p > Req,n and the PU time is bigger than the PD time, so larger tau_pLH. 

In this circuits the PD is difficult to be assessed because the nMOS is hampered by the pMOS transistor 

with its current. 

 

In the plot the pMOS aspect ratio is increasing from top chart to upper chart, because Rp decreases. 

Req,p(1) = 31 kOhm, and the generic Req,p = 31kOhm/(W/L)p. Instead, Req,n = 13 kOhm. 

Increasing the pMOS aspect ratio decreases the pMOS equivalent resistance and so Vol increases. So Vol 

is inversely proportional to the Req,p. 

 

The propagation delay instead increases (time needed to cross Vdd/2) as we increase the aspect ratio. If 

Rp = Rn, the pull down propagation delay is infinite, because physically the capacitor is not discharged, 

there is no current available for the capacitor to discharge. So we cannot size the pMOS to have the same 

Req of the nMOS. Keeping the pMOS small has instead a benefit in terms of propagation delay from 

high to low at the output, reducing the hampering effect. 

 

The Req,p = 31 kOhm was assessed with the pMOS in velocity saturation. But in this case the operating 

region of the transistor, at the beginning is, with Vout = Vdd, ohmic. So 31 kOhm is an approximation, 

a very rudimental estimate of the equivalent resistance of the pMOS. 

 

With this rudimental analysis let’s try to quantify the pull-down delay, tau_pHL. 
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Pull-down delay 

We want to take into account the pMOS hampering effect. Currents Ip and In 

are related to the conductance. It is like the equivalent conductance of the pull 

down is the conductance of the nMOS minus the one of the pMOS. Then the 

conductance is 1/Req. 

Stated this, we can say that the equivalent resistance of the pull down is the difference between the inverse 

of the equivalent resistances. So the effective pull down resistance is the equivalent resistance of the 

nMOS divided by a term 1 – something. The ‘something’, if (W/L)p < (W/L)n, is smaller than 1. So we 

are like magnifying the Req,n (the denominator is < 1), that is the same of saying having less current for 

the pull down. 

So numerically we get as below. 

 

What about the capacitance? In the reference FC-CMOS inverter we had Cint = 2 fF, now Cint = 1 fF, 

because the sum of aspect ratio is 2 (in the reference inverter is 4). At the input A instead we have 0.5 fF 

in this case. So smaller intrinsic and gate capacitances. 

 

Let’s assess PU and PD times, as in the image above, with Cint = 1 fF.  

In the simulation we have a smaller propagation delay because the output voltage in the LH transition is 

not starting from 0V, but from a higher voltage (0.26V). 

 

As for the pull down, the model is the same but we use the effective pull down resistance. Again, the 

simulation is better but because the approximations are very rudimental. 

x 
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Estimating the HL time with the formula x is like using the following circuit to estimate the delay.  

 

However, this model is not accurate for our circuit, we need to revert to another circuit. The plateau value 

is not 0, but Vol. 

The other approximation that leads to a non-negligible error is that the pole of the circuit above is tau = 

C*(Req,p||Req,n), while we are not assessing Rpd as a parallel resistance. 

 

Logical effort (g) and intrinsic propagation delay factor (p) 

Let’s assess them for the pseudo nMOS logic. They are not just one value, but they are different for the 

PU and PD transitions, because the transitions are asymmetric. The pseudo nMOS gate must be 

compared with an equivalent FC-CMOS inverter featuring the same equivalent resistance for the 

considered transition. Req,p(1) = 31 kOhm, so for the pull up the pMOS is (1), and the nMOS is (1/3) in 

the FC-CMOS inverter. Let’s neglect also the hampering effect, considering Rpd = Req,n. 

 

For the pull down, the Req,n(1) = 13kOhm, so the inverter must have the nMOS with size (1) and the 

pMOS (3). 

Pull-up 

We have to consider the pseudo nmos logic and the FC-CMOS inverter on the top. The p is the ratio 

between the sum of the aspect ratio in the pseudo nmos gate and in the FC-CMOS inverter, so 1.5. 

For the logical effort g we look at the input and we do the ratio as for p. In the end g = 0.75. 

 

Pull-down 

Same analysis as the pull-up, but with the reference inverter at the bottom. 
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Then the final g and p are obtained averaging them. The p is not so improved, the great benefit is in g at 

the input, with respect to the FC-CMOS case. 

If p = 1, the pseudo inverter has an intrinsic propagation delay of p*tau_p0 = tau_p0, that is the same of 

a classical FC-CMOS inverter. The great benefit in the input capacitance since g is much smaller. 

 

Let’s consider a more complex gate, e.g. a two input NAND. 

 

The pMOS is always considered with the minimum aspect ratio. So in the end there is a great benefit in 

terms of g, so of input capacitance. 

 

The two drawbacks Vol > 0V and the Plow > 0W, which means static power consumption, are very bad, 

in particular the latter. FC-CMOS are used to implement pMOS and nMOS electrically equivalent so 

that there is never a connection between Vdd and ground at steady state, so static power consumption. 

So we can improve the circuit to cope with these two problems. 

 

In analog electronics to solve this kind of problem concerning stability and bandwidth are solved with 

negative feedback. In digital electronics negative feedback is substituted by positive feedback, and we also 

need to resort to a differential configuration. The combination of positive feedback and differential 

configuration allow to solve problems. 

 

DIFFERENTIAL CASCODE VOLTAGE SWITCH LOGIC (DCVSL) 

It is the result of the combination of positive feedback and differential configuration. It is a differential 

pseudo nMOS logic. The gate is the one on the left, and it allows to have both the true function and the 
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complement of the function in output. So we have two different PDN, which are dual and 

complementary, so if on the right PDN we have the NAND, on the left PDN we have the AND → never 

simultaneously on. We will skip the gate on the right. 

 

The positive feedback is in the cross-coupled pMOS device, also known as semi-latch. 

 

We want to verify that it is a positive feedback. So we cut the loop and check that the signal that returns 

is positive. If it was an analog circuit, the pMOS would be in common source configuration. 

So we have two inversions in cascade and we get a positive feedback. 

 

DCVSL sizing 

The PDN1 (left) is the PDN of a NAND, while on the right we need to have the complementary PDN, 

so it is the PDN of  an AND. To implement the AND we use the De Morgan theorem (it is the AND 

PDN for the complementary input signals). 

Let’s consider e.g. A = 0 and B = 1. The PDN1 is off, while on the PDN2 we are on and out_bar = 0. 

 

If B = 1 and A = 0, M1 and M4 are off. Let’s start from the condition that out = Vdd and out_bar = 0V. 

Now A transitions from low to high, so M3 is disabled (PDN2 is off) but M1 is turned on. node x remains 

floating, at 0V, where the capacitance was charged. 

If the PDN > PUN, node y is discharged. But this means that the pMOS transistor on the right side is 

turned on and charged node x capacitance to Vdd, but if so, the pMOS on the left tends to be disabled, 

so node y can go to 0V. So it is a very powerful circuit because the pMOS transistors are on when the 

node has to be 1, but then they are able to switch off when the node has to go to zero, thanks to the 

positive loop. It is not like in the pseudo-nMOS logic where the pMOS is always on. 

 

DCVSL – recap 

The pseudo nMOS logic has some drawbacks: 

- Vol > 0V and Vol depends on the relative size of the pMOS and PDN → reduced noise margins 

and reliability. 

- Static power consumption, we have a DC static current when the output is 0. 

To avoid these issues, we can resort to DCVSL. It is like resorting to a differential implementation and a 

positive feedback loop. 

x y 
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A generic gate implemented in DCVSL includes two complementary PDNs. These two are fed by the 

same input signals. Above we have the semi-latch (cross coupled device). 

 

Let’s consider the gate on the right, which implements the XOR and XNOR functions. XOR 

goes to one if the two inputs are different → Y = A*B_bar + A_bar*B. 

To implement a gate that synthetizes the XOR, I need to express it in an inverted form. So 

I apply a couple of bars and the De Morgan theorem or I can study the k-map. 

Now I can consider the complement of this k-map, which is the XNOR, which is XOR_bar. So Y_bar = 

(AB + A_bar*B_bar). 

So now I can write Y in a complement fashion. 

 

This will result in the following PDN for the XOR: 

We can derive the complementary PDN. The complement of the XNOR function is the XOR function 

(k-map above). 

Summarizing: 

For what concerns the PDN of the XNOR: 
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Then in implement the latch and I have the DCVSL. 

The circuit in the slide before is exactly the circuit here above, but some transitors are lumped together 

to spare area and power consumption. 

 

This said, let’s consider the following gate, and A = B = 0 at the beginning, with them then transitioning 

to 1. Before the transition of the inputs, PDN on the left is off, while the one on the right is on. This 

means that the output_bar is pulled down (left pMOS on), while Out is at Vdd. 

When the input transitions, the left PDN is turned on and the PDN on the right is turned off. Now 

out_bar is floating (it’s a capacitance charged to 0V, and the right pMOS is off). As for Out, we have a 

pMOS still on, but the left PDN is also on, so we have a cross conduction current since we have a direct 

path from Vdd to ground. This is a side effect of this logic during the transient. 

 

As for the right side, if the left PDN is stronger than the left pMOS; the Out is pulled down, so we have 

some current discharging the capacitance at Out. If so, the pMOS on the right, which was previously 

floating, is switched on. So the capacitance on Out_bar is charged. As a consequence, the transistor on 

the left (pMOS) gets off, and so the PDN on the left is no more hampered by the pMOS and the Out can 

go to 0V, while on the right Out_bar we have Vdd. 

 

In this case there is no more Vol > 0 as in pseudo nMOS, thanks to the positive feedback loop. 

 

During this analysis we assumed that the left PDN is stronger than the left pMOS. Let’s try to redo this 

analysis removing this hypothesis and assume that the pMOS is stronger than the left PDN. Out 

capacitance is charged to Vdd, Out_bar to 0V. Initial situation is the same as before, with M1 and M2 

and right pMOS off. then the transition occurs and M1 and M2 are on, while M3 and M4, previously on, 

are off. So again I have a crossconduction current on the left. If the pMOS is stronger, node Out remains 

stuck at almost Vdd (not Vdd because this implies a current equal to 0 in the pMOS, but the PDN is on 

and drawing current, so it cannot be Vdd), a bit smaller, so the pMOS on the right remains off. Hence 

also the capacitance on Out_bar remains floating to 0V. 

This circuit is not working because nodes cannot move from this situation. 

 

We can assess the maximum aspect ratio of the pMOS transistor with respect to the PDN to have this 

circuit working. 
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Limit condition 

Which is the limit condition that makes the network working? 

It depends on the ‘turning on’ of the right pMOS, we need to turn it on. The pMOS on the left is on 

because its gate is at 0V, while on the right node we have a floating pMOS. So voltage x must go below 

Vdd - Vtp. This means that the Vgs of the pMOS on the right is greater than Vtp and it is hence turned 

on. 

The objective of the analysis is to assess the aspect ratio of the pMOS transistor with respect to the one 

of the nMOS (maximum beta factor) that allows the gate to work. 

The situation on the left is the following. 

We consider the PDN with a (W/L)n,eq = ½ (W/L)n, since they are in series, and I can substitute the 

PDN with a single nMOS of (W/L)n,eq. In our reference technollgy, Vdsat,n = 0.63V, Vtn = 0.43V and 

Vtp = 0.4V. This results in Vy = 2.1V 

The pMOS is working in ohmic, with Vds = Vtp. The nMOS is working in velocity saturation. 

We can now assess the maximum beta, which corresponds to this limiting condition. 

 

Of course, in the gate we need to grant a beta factor smaller than this one. 

 

Transient response 

A and B transition from 0 to 1, vice versa A_bar and B_bar. If we look at the transient response, we can 

notice that: 

1. Pull down is faster than pull up. It is reasonable because it copes with the activation of the loop. 

In fact at the beginning we pull down Out, then the pMOS on the right is turned on and this 

corresponds to the pull up of Out_bar, and then we switch of the left pMOS. This also means that 

there is no more hampering effect, because we switch off the pMOS on the side we need to 

implement a logical ‘0’. 

2. Cross conduction current. From 0.2ms on, the PDN is on; A*B is the gate voltage of the pMOS 

on the left and when it reaches 2.2V, the pMOS on the left is off. So we have a cross conduction 

x 
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current in the left path in this period of time. Only after the second red bar the hampering effect 

is no more present and the pMOS is really off. 

 

We notice that the Out = (A*B)_bar has a change of concavity, like if it has a faster drop. In the first part 

of the transient, the PDN is hampered by the pMOS transistor; if the pMOS would have stayed on, the 

Out could have not reached 0V, it remains to a voltage greater than 0V (if the loop was cut). Fortunately, 

the voltage drops to zero because the loop switches off the pMOS. The change of concavity is because 

we are speeding up the pull down. 

 

Let’s now focus on Out_bar. We notice that it takes some time to start to rise because we are increasing 

the Vgs of the pMOS, and it requires some time. Once it is slightly on, the Out_bar capacitance starts to 

increase its voltage. 

Furthermore, Out_bar has an underbounce, it is smaller than 0, negative, e.g. -150mV. We have an 

overlap capacitance between gate and drain of M3 and M4, so something like a voltage divider made of 

capacitances, so we have a capacitive coupling to Out_bar. Also because in this small time the pMOS is 

off. 

 

We don’t have the same behaviour in the Out transition because the left pMOS is on at the beginning of 

the transient, so the node is fixed to Vdd. The network would be the following, with a RC network that 

keeps the voltage to Vdd. 
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PASS-TRANSISTOR LOGIC 
 

A static logic is a logic where the output is always connected to Vdd or GND with a low impedance path. 

Pass transistor logic is a static logic. 

 

The idea is to improve the FC-CMOS logic, which has the drawback of pMOS transistor usage, which 

are not so conductive and hence must be increased in size (bulky). 

In pass transistor the idea is to use nMOS transistors to convey a signal that can be Vdd or ground. 

 

Transistors as switches 

We can implement an AND gate with just two transistors, as in the right grey box. This is the approach 

of multiplexing. The select signal of the multiplexer is B. When B = 0, the output is 0, so it’s B, and when 

B = 1, the output is A. The expression is: Y = A*B + B*B_bar, but B*B_bar = 0, so we get Y = A*B. 

 

The idea is to implement something like a multiplexer. The two paths for B and B_bar of course are never 

on at the same time. 

 

Advantages 

No static power consumption because we will never have a path between Vdd and ground since they will 

never be on simultaneously. So if e.g. A = Vdd and B = GND and the two are on at the same time, we 

would have a connection between Vdd and GND, but in this case it will never happen. 

 

Furthermore, we are not using pMOS transistors, it is an nMOS only network. 

 

 

 

x 



150 
 

Disadvantages 

Let’s remove the buffer and consider the output at node x. We put B = 1 and A = Vdd; the voltage at 

node x is Vdd – Vt, that in our reference technology is 2.5 – 0.43 = 2.1V. However, we are neglecting the 

body effect in doing so, so the voltage is not 2.1 but 1.7V (real Vt = 0.8V), so loosing 0.8V with respect 

to Vdd. 

Once we reach 1.7V, the top transistor is turned off and not able to bring the voltage at node x at Vdd -

Vt = 1.7V, so it is in cutoff, hence x is floating (also because the bottom transistor is off) and thus we are 

not implementing a static gate (we don’t have a path to Vdd or GND), because the output node is floating. 

 

So as a first disadvantage, Voh = Vdd – Vt*, where Vt* is the nominal threshold voltage increased by the 

body effect. 

 

There is another drawback. Again, let’s consider B = Vdd and input A transitions from 0V to Vdd. Output 

x is 0V, because also A is at 0 at the beginning and there is no current. Then we apply the transition, 

current flows from left to right and so the source is at x. The Vgs = Vdd – Vx, and Vx is increasing, so 

the transistor is reducing its driving capability because we are shrinking the Vgs voltage. This is also a 

reason why nMOS cannot be used for pull-up (very slow pull-up), aside from the fact that we cannot 

reach Vdd. 

 

If we now assume that the buffer is an inverter, a classical FC-CMOS inverter in reference technology 

with threshold in the middle, we have that Vol = 0V and Voh = Vdd. If A = 0, out will be Vdd, but if A 

= Vdd, since x is not 1 but 1.7V, the output of the inverter is not exactly 0, but something slightly higher. 

If we apply 1.7V in input to the inverter, both pMOS and nMOS are on, so we have a static power 

consumption from Vdd to ground. This is a huge issue. Moreover, if the input is 1.7V, the output cannot 

be exactly 0 because both transistors are on. 

Thankfully, the inverters have the regenerative property and we can regenerate the output at the output, 

we regenerate something close to 0V (even if not exactly 0V). 

 

Example – AND  

From the k-map I select B as the select signal of the MUX. When B = 0, output is 0, and when B = 1 

output is A. So one input is grounded and the other is to A, and B and B_bar command the switches. 

 

Example – OR 
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ISSUES 

 

These are the other issues that are present. One is the problematic cascade. 

 

Problematic cascade 

If we want to cascade gates, we have a problem. Let’s consider the circuit on the left (even if it is not the 

complete gate, some branches are missing). The complete circuit would be the following. 

 

When B or C = 0, Y = 0, and also when B = C = 1, Y = A. So only when B and C are 1 the output is A. 

So we have a 3 input AND gate (Y = A*B*C). 

Let’s now consider A = Vdd = B = C. The current in the series is 0 because we are in an infinite impedance 

path (input of the inverter is at high impedance). Hence node x is at Vdd – Vtn* (considering body effect) 

= 1.7V. At node Vy = Vdd – Vtn* = 1.7V. The first transistor is off, the other is in ohmic with Vds = 0V. 

So Vy is not able to reach Vdd. 

 

Let’s focus on the circuit on the right of two images ago. We are trying to connect the output of a pass 

transistor network directly to the gate of another pass transistor. So they are not in series. 

Let’s suppose again A = B = C = Vdd. Vx = Vdd – Vtn1* = 1.7V, considering body effect. When we 

reach 1.7V the transistor is turned off. Instead, Vy = Vdd – Vtn1* – Vtn2*. The two thresholds are not 

equal, the largest one is Vtn2 because the body effect is smaller since the bulk source voltage is smaller, 

so it is something like 0.6V. 

 

This is a big issue because in input A we have a logical 1, so the output should be 0V. But since Vy is 

almost 1V, the output is Vdd, so it is a logical mistake. I cannot cascade gates with nMOS transistors, 

because we loose thresholds. 

 

LEAP LOGIC 

It solves all the issues explained so far. It involves: 

- Pass transistor network 
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- Level restorer (weak pMOS transistor) 

- Static inverter that drives the restorer 

With this combination I can overcome all the issues seen so far. 

 

The pass transistor network is done with Mn transistors. Then we have the FC-CMOS inverter with M1 

and M2 and the Mr is the pMOS level restorer. 

We have a positive loop at node x with the inverter and the pMOS in common source configuration. 

 

 

Let’s consider B = Vdd always, and A transitioning from 0 to 1. When A = 0, x = 0V, out is Vdd and the 

pMOS is off. 

Let’s consider now the transition at the input of A. Transistor is like aside. Node x can 

reach Vdd - Vtn. As soon as the node x passes the switching threshold increasing, the 

output of the inverter is toggled to 0V, so the pMOS turns on. If so, Vx can reach Vdd, 

because now pMOS and nMOS transistor are both pulling up the node, since the pMOS is performing in 

the last part of the transient. So Vx = Vdd and Out = 0V. 

Thanks to the positive feedback, the static power consumption in the inverter has been solved, it is 

negligible the transient current. Moreover, we have also a full swing.  

 

Drawback 

It is a ratioed solution. The problem, in fact, is for the transition from Vdd to GND of node A. At the 

beginning, Vx = Vdd, out = 0V and pMOS is on. When we have the transition, we can represent the 

circuit as the following. 

Vx value depends on the relative strength of the pMOS and nMOS, so on the beta factor between the 

two. If the pMOS is strong, Vx = Vdd and it remains stuck to approximately Vdd even if we are trying to 

pull down it. Hence the circuit is not working, it’s too strong. So the pMOS has to be weaker than the 

nMOS. 
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When x drops, we have the inverter and once the switching threshold of the inverter is passed, the inverter 

toggles to Vdd in output and the pMOS is switched off → Vx can reach exactly 0V, it is no more hampered 

by the pMOS. 

 

Starting from the leap logic, let’s consider B = 1, and A transitioning from 0 to 1. When A = 0, x = 0, the 

output of the inverter is Vdd and the pMOS is off. 

Then we consider the transition, that is A = Vdd. Node x is the source of the transistor, the pMOS is off 

and so the current flows in the Cg of the inverter and x rises. 

 

If the pMOS would be always off, x can reach Vdd – Vtn* = 1.7V, affected by the body effect. Let’s then 

take the inverter as a minimum size one (1) with beta = 3 and Vm = Vdd/2. As soon x crosses Vdd/2, 

the inverter toggles and the output of the inverter goes to 0V. The pMOS is turned on and x node is 

charged both by the current of the pMOS and the above nMOS, allowing x to reach Vdd → pMOS is a 

level restorer, which performs the transition from 1.7V to 2.5V. So there is a positive loop acting. 

 

Let’s consider the opposite transition, A transitioning from 1 to 0. Node x is charged to Vdd at the 

beginning. The pMOS and the nMOS are both on. 

X starts from Vdd and at the end of the transient its final voltage depends on the aspect ratio of the two 

transistors. If the pMOS has a larger aspect ratio, x is close to Vdd because the pMOS is very conductive 

(small on resistance). If so, x stays at Vdd, so the output of the inverter stays at 0V and nothing happens, 

x is not pulled down even if A = 0 → logical mistake. 

If instead the pMOS size is the same of the nMOS, so it is less strong due to the different process 

transconductance, x cannot reach 0 still. However, as soon as we cross Vdd/2, the inverter toggles, the 

pMOS is switched off and the nMOS is no more hampered by the pMOS and x can reach 0V. This is the 

correct way to size the gate → pMOS must be weaker than the nMOS otherwise the pull down cannot 

be performed. 
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Simulations result 

 

The previous circuit is taken with A = 0 and B is transitioning (light gray). On the left I’m plotting node 

x behaviour, while on the right the output node. 

From node x we expect the signal high at the beginning, then it goes down and up again when B returns 

0. We are considering the cases with and without the level restorer. 

 

Without the level restorer we are not able to reach Vdd. Of course the voltage increases slowly along 

time, and if we wait enough it reaches Vdd thanks to the subthreshold current. 

If we consider instead the presence of the pMOS, we notice a change of concavity in the x, that is due to 

the fact that the inverter toggles and switches on the pMOS. 

As for the pull-down transition of x, it seems that without the pMOS we are faster, and it is. First of all, 

we start from a smaller voltage because without the pMOS we are not able to reach Vdd. Then there is 

no hampering effect because there is no pMOS that ‘fights’ against the transistor to keep the node at Vdd. 

 

So the pull down is faster without the level restorer, but we still need it because if we cascade the leap 

logic with the FC-CMOS inverter, at 1.7V (final voltage reached by x when we don’t have the pMOS) 

we have cross conduction current, because pMOS and nMOS are both on. 

Then the overall output is a full swing because the inverter has the regenerative property. 

 

The absence of the level restorer can also be seen in position y, where we have that the output is not 

exactly 0. This because the input voltage of the inverter is 1.8V and the voltage in output to the inverter 

cannot be exactly 0 because we have a cross conduction current. 

 

Beta factor assessment 

Let’s call (W/L)p and (W/L)n the two aspect ratios. The objective is to assess the maximum beta factor 

so that the leap logic works fine in the pull down of x. x has to drop below the switching threshold of the 

inverter (Vdd/2) to turn on the positive loop and switch off the pMOS. The circuit to consider is the 

following, with pMOS on at the beginning. 

The limit condition for x, and also final point, is Vm = Vdd/2. In this final condition, the two transistors 

are both in velocity saturation region, so I equate the two currents in velocity saturation region of the two 

transistors. 

y 
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K’n = 115 uA/V^2, K’p = 30 uA/V^2 in 0.25 um CMOS from intel. In the end we get beta = 2.6. 

This is the maximum aspect ratio of the pMOS to have the circuit working correctly. 

 

I cannot consider transistor with aspect ratio of 1 because it cannot be implemented. In the plot we have 

the voltage at x for different values of the (W/L)p. Also in the pull down we have a change of concavity 

due to the elimination of the hampering effect of the pMOS. Before the concavity we have it, after we 

don’t. 

 

Up to now, the inverter has been consider a classical inverter with switching threshold in the middle. 

Typically, the inverter is sized so that the switching threshold is well below the middle of the supply 

range. 

If we consider a pMOS weaker than the nMOS, the transition that ‘struggles’ for node x is the pull up, 

which is somehow not so good because we are using the nMOS for the pull up and the pMOS that acts 

only at the end of the transient, because before it it’s off. 

Let’s suppose to have a Vm = 0.7V < Vdd/2. If so, the inverter toggles earlier and the pMOS comes into 

play earlier in the pull up. 

 

How can we get a Vm smaller than Vdd/2? 

We reduce the pMOS size (of the inverter). This means that the transistor is low-skewed. This is very 

useful to speed up the pull up of the node x. So the advantage is not in the classical propagation delay, 

but in the time in which the transient is over. 

 

LEAP logic is very powerful because we can implement complex gates with just few and small transistors, 

not in the FC-CMOS gates. 

The problem is that it is a ratioed solution, the pMOS has a maximum aspect ratio over which the gate 

is not working correctly. In fact, sometimes we want to increase the pMOS ratio, to increase the pull up 

(pMOS here is the hampering one). 

 

How can we solve this problem? We use a differential configuration and a feedback loop. 
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DIFFERENTIAL IMPLEMENTATIONS 

 

LEAP is single ended, and I want a differential gate. Instead of implementing one multiplex, we 

implement two of them; the two multiplexes have the same select signals, what we change are the inputs, 

complement inputs from one mux to the other. 

We take B = 0 and consider the first gate → Y = A_bar*B + B_bar*1. 

If we write the k-map, we see that it is indeed the NAND. 

 

Let’s consider the XOR. When B = 0, the top most transistor is on and Y = B_bar*A. Then in parallel 

we have another path that is on when B = 1 → Y = B_bar*A + B*A_bar. 

Then we have to replicate the network and invert the inputs, and we get the XNOR. 

 

The problem of the output node Y is that it cannot reach Vdd, it is Vdd – Vtn*, so the two following 

inverters are subjected to cross-conduction current. Furthermore, from a logical perspective, this Y node 

is equal to F, and x to F_bar. However, F and F_bar are almost full swing thanks to the regenerative 

property of the inverter. 

 

SWING-RESTORED PASS TRANSISTOR LOGIC (SRPT) 

 

We have bridging connections since the connected outputs are the same from a logical perspective, but 

the output of the inverter has the advantage to be full swing. So from a logical perspective we have a level 

restorer after x and y, made of two inverters in cascade. It is a latch. 

x 

y 

z 

z 
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It is used to implement flip-flops and memories, particularly SRAM. 

 

The latch implements a positive feedback loop. Unfortunately, it is a ratioed solution; in particular, the z 

pMOS cannot be sized too large, because they cannot be stronger than the nMOS transistors used in 

the pass transistor network. 

 

Let’s consider the following example. B = 1 and A transitioning from 0 to 1.  

At the beginning of the transition we have A = 0, so in the upper inverter the pMOS is on and the nMOS 

is off, so the output is Vdd. In the lower part the pMOS is off and nMOS on. 

Then we have A transitioning. The upper part has the pass nMOS that is trying to pull up a node which 

is connected to the nMOS transistor of the bottom inverter, which is on, so the two transistors are fighting 

each other. If the two have the same size, the one of the inverter wins because the nMOS is stronger in 

performing the pull down. 

 

But the bottom pass nMOS has to pull down a node connected to a pMOS connected to Vdd. If the 

pMOS is weaker, the nMOS wins, so we are able to pull down the node at position y. So in the bottom 

inverter the nMOS switches off and the pMOS switches on. Consequently, the bottom pMOS of the 

inverter helps to pull up the node in the upper path, so also the pMOS in the top inverter is switched off 

and the nMOS turned on. In the end this is a positive loop. 

 

So the pass nMOS transistors have to be stronger than the pMOS transistor in the inverter, otherwise we 

cannot activate the positive loop. 

 

COMPLEMENTARY PASS TRANSISTOR LOGIC (CPL) 

 

It is ratioless. In order to improve the LEAP function, we can exploit some expedients: 

- Differential architecture, so that we can implement SRPL, which is however ratioed. 

- Positive feedback. 

These two expedients together lead to CPL. 

 

NAND 

AND 
y 
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Let’s remove the two inverters for now, they are useless for the correct working for the gate, but used for 

another reason that will be explained later. The CPL is made of two pass transistor networks at the 

bottom, the true network and the inverse network, which are two equal multiplexers and the real inputs 

are complementary. Node X implements the function X = A*B, while Y is the complementary function 

Y = B*A_bar + B_bar = (A*B)_bar. 

The restorer is made of a semilatch. 

 

The CPL resembles a DCVSL in terms of restorer, but it is completely different in terms of bottom 

networks, which are not PDN, but pass transistor networks. So nMOS are used as pass transistors, not 

pull down transistors. So DCVSL is ratioed, while CPL is ratioless, because of the use of pass transistors. 

 

We can demonstrate that whatever the size of the pMOS with respect to the pass transistors, the gate 

works fine, and X and Y are full swing signals. We start by designing the gate, considering just the left 

branch on (B = 1). 

Let’s consider A transitioning from low to high. Before the transition occurs, the pMOS on the right is 

on and keeps Y to Vdd. On the left, the pMOS is off. 

 

pMOS < nMOS 

Let’s apply the transition and considering a sizing with the pMOS < (weaker) than the nMOS. According 

to the transition, node X has to be pulled up, Y down. 

The first node to transition is Y because nMOS are more prone to perform the PD than the PU, so node 

Y is discharged with a discharge current drawn from the capacitance attached to Y. This current is 

somehow hampered by the right pMOS that is on, even though the nMOS draws a higher current because 

it is stronger than the pMOS. So the capacitor at the output Y is discharged, and the hampering effect is 

negligible. 

 

If node Y is pulled down, the pMOS on the left is quickly turned on and pulls up node X together with 

the nMOS on the left, so also node X is pulled up (at the beginning only the nMOS pulls up, then the 

pMOS on the left cooperates). 

Hence chronologically we have: 

1. Pull down with negligible hampering on node Y. 

2. Pull up, firstly nMOS and then also pMOS for X. 

 

Let’s consider now a sizing with pMOS (10) > nMOS (1). 



159 
 

pMOS > nMOS 

The first transition occurs at node X. In fact, at the beginning Y is hampered close to Vdd by the pMOS, 

which is stronger than the nMOS. On the left side, the pMOS is off, so the nMOS on the left can charge 

the capacitance at node X, with a very small current. 

Node X increases, so the pMOS on the right is switching off, and at a certain point the right nMOS is no 

more hampered and can discharge node Y. As soon as this occurs, the left pMOS is turned on and it 

performs the last part of the pulling up of X. Chronologically: 

1. Weak (slow) pull up of node X performed by a weak nMOS. 

2. Pull down of Y. 

3. Completion of pull up of X. 

 

Of course this is not the right sizing, because the first transition to occur is a slow pull up made by an 

nMOS. So the gate works but it is very slow, the correct sizing was the previous one. 

However, since the pMOS transistor has not a maximum aspect ratio, we can increase the pMOS size 

to balance the two transitions, pull up and pull down. With this kind of gate we can have two more or 

less equal propagation delays. 

 

A possible sizing is the following, to have equal propagation delays. 

Role of the inverters 

They are not mandatory for the correct working of the gate. Inverters are used as buffer to drive other 

gates avoiding long chain of transistors. 

 

Let’s consider a CPL with AND and NAND and let’s suppose we want to implement the function Z = 

A*B*C. 

The second gate can be fed with the signals X and C, and we get Z. 
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Without the inverters, we have the following networks. 

 

From input A we have a certain path to ABC, and we are cascading two nMOS transistors, and if we 

cascade with other gates we might have a lot of nMOS transistors in cascade. The problem with cascading 

nMOS transistors is the capacitance in the middle nodes, because we have to discharge a lot of 

capacitances (or charge), increasing the propagation delay quadratically. 

 

So the use of the inverter is suggested because it can lead to benefits in terms of propagation delay. Indeed, 

they act as buffers (same rationale as the wire cutting), avoiding a propagation delay that increases 

quadratically. If the increase in the delay is not a concern, we can actually remove the inverters. 

Nodes X and Y are full swing regardless the presence of the inverter and whatever the sizing of the pMOS 

transistors, because we are implementing pass transistor network and not PDN. 

 

Another advantage is that we have two complementary outputs at the same time. 

 

DCVSL VS CPL 

Let’s design the same function, AND/NAND. For the DCVSL we have two complementary PDNs. 

 

Aside from the inverters, the two networks are very similar, also with the same restorer (semilatch). The 

main difference is in the nMOS network; for the DCVSL the nMOS can only perform pull down, because 

connected to ground. For CPL we have pass transistor network which can perform both pull up and pull 

down. 

 

As a second remark, in DCVSL we don’t need buffers because we will never have a cascade of nMOS. 
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DESIGNING CPL GATES 

In the example we have a 3 multiplexer, where A, B and C are the select signals of the multiplexer and 

the inputs are D and D_bar. 

 

How to implement the pass transistor network 

We start from A, B, C = 0, and Y = 0. This corresponds to the following path.  

 

Let’s take A, B = 1 and C = 0. At transistors level corresponds to the path x. In this case Y = D_bar. 

 

 

In all the other cases in the last two rows, Y = D. 

 

To optimize the gate, we need to look at the k-map and search for patterns of the output values. It is 

evident that in the last two rows we have 1 – 0 and the output is D whatever A and B value, so if C = 1, 

the output is D whatever the value of A and B. 

Then in the middle I can recognize the combination of 0 – 1, and I don’t care about the overlap, the 

important thing is to create the largest possible pattern. 

 

 

x 
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In the end I can get an ad-hoc solution for this k-map. 

 

Let’s consider the case C = D = 1 (row with all 1). We can notice an important property. In fact, for this 

configuration of the inputs, two paths are on, while in the general implementation of the CPL gate it 

never happens that two paths are on at the same time. 

 

Recap – Difference between DCVSL and Pass Transistor Logic 

Let’s implement the function Y = A*B. The two logics share the same level restorer, a couple of pMOS 

transistors connected in positive feedback. For DCVSL we have PDN, one complementary and dual of 

the other. In the DCVSL (left) we are implementing two complementary PDN, while in PTL we have 

pass transistor networks, not PDN, so they are able to perform both a PU and a PD. 

Furthermore, DCVSL is ratioed, PTL is ratioless, so we can size the pMOS transistor in the way we 

want, without considering the strength of the level restorer. So Y and Y_bar in the PTL are full swing 

signals. Instead, for DCVLS the PDN must be strong enough to turn on the pMOS transistor, otherwise 

the feedback is not enabled, and the gate doesn’t work correctly. 

In the DCVSL gate we don’t need inverters because the input is always connected to a gate of the next 

gate. 

 

 

TRANSMISSION GATE 

 

Sometimes it can be powerful to implement real switches that are able to convey both signals, 0 and 1. 

However, if we use circuits made only of nMOS as in the CPL gates, the nMOS is asked to perform both 

the PU and PD, but it performs well the PD. So the idea is to implement a switch with the pMOS and 

nMOS in parallel, activated by complementary signals. The nMOS is on for C = 1, the pMOS is on by C 

= 1, since inverting. So the two transistors are on for the same signal, not for different signals. 
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The advantage is that pMOS is good at PU, nMOS at PD, so this switch is good at whatever transition 

we are considering. 

 

Example – Tristate Inverter 

It’s an inverter whose output can be a logical 0, 1, or high impedance. If we 

consider two DSP circuits connected to the same output, having an idle output is 

needed if one of the two has to communicate on the line. 

We need a transmission gate because if e.g. only an nMOS transistor was used, we 

have a problem for A = 0, because the output of the inverter reaches Vdd, but the 

nMOS can pull up only to Vdd – Vt. 

 

Example - Multiplexer 

This circuit works correctly, node Y is a full swing signal, 

since we are using transmission gate, so the inverter is not 

mandatory for the correct working of the gate. 

It is used as a buffer; we need it to avoid a long series of 

transmission gates if we connect one after the other, otherwise the 

delay increases quadratically with the number of elements. 

 

Moreover, it is a very powerful circuit since we are implementing a 

powerful multiplexer with only 8 transistors. This circuit has good 

properties, in fact it is full swing and the output is buffered, with limited number of transistors. 

In terms of area, maybe the LEAP gate is better than the transmission gate (less transistors), but in 

transmission gates we are not ratioed and in the case of LEAP (truthfully, in all pass transistor logics) we 

have to consider cross conduction current since it is ratioed, while for transmission gate it is not a problem 

because we don’t have any level restorer. 

 

Example – 2-inputs NOR 

Y 
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On the left we have the classical implementation with a multiplexer-based approach. When B = 1 the 

upper path is on and Y = A_bar, while when B = 0 the bottom part is on and Y = A. 

This XOR requires 6 transistors + 2 inverters to implement A_bar and B_bar, so overall it is a 10 

transistors implementation. I can implement the same function using a CPL. 

 

The function is Y = A*B_bar + A_bar*B. We can transform this in an inverting function, which results 

in Y = (A*B +A_bar*B_bar)_bar. We can implement this with a FC-CMOS gate, resulting in two pMOS 

transistors in series in the PDN and two in the PUN, so we have to counterbalance this effect increasing 

the size. 

 

Moreover, in the mux-like design (left) we have two outputs, Y and Y_bar, but in order to cascade gates 

the output must be taken after the inverter. As a second remark, we have also to consider the two inverters 

to generate A_bar and B_bar because TGL is a single ended logic, the output is just Y. If the logic is 

single ended, if we need to cascade gate we need to complement Y_bar. Instead, CPL is differential, so 

we have at the same time Y and Y_bar. 

 

The alternative implementation (on the right) is still a XOR gate, but very naïve. It is made of two parts, 

a strange circuit on the left (which is not an inverter) and a transmission gate. Let’s neglect the final 

inverter in the classical mux-like design to compare the alternative implementation with it. 

In the alternative implementation we have to consider the cases B = 0 or 1. 

 

B = 1 

We notice that the transmission gate is off, and Y is A_bar (classical inverter), which is the same 

behaviour of the classical implementation. 

 

B = 0 

Y = A according to the transmission gate. The part of the circuit that previously was working as an 

inverter is now different, we have a combination of two followers, two common drains, so from a logical 

standpoint we have A in output of it. 

 

If the transmission gate is on, we cannot have a conflict, so it is expected to have A in output of the right 

part, which works as a buffer. To implement this naïve XOR gate we need only 4 + 2 transistors, used to 

implement B_bar. 

So this alternative implementation is very powerful because implementing the XOR gate with only 6 

transistors, we cannot do better than this. So it is a powerful approach if we have to reduce the area. 

Moreover, since we don’t have a level restorer, we don’t have the cross-conduction current issue. 

 

Remark 

If we consider the TG as a switch, we are combining the properties of pMOS and nMOS transistors, and 

we can verify that the equivalent resistance, the large signal one defined as Req = Vds/Ids, is rather 

constant throughout all the transient from 0 to Vdd, and more or less equal to 6 kOhm. 

It is 6 kOhm since in our reference technology, during the PD, the nMOS has an equivalent resistance of 

Req(1),n = 14 kOhm. For the PU, for a pMOS of size 3, Req(3),p is 31 kOhm/3 = 10 kOhm. 

 

From the graph, it seems that the nMOS resistance Rn increases up to infinity. This because during the 

pullup, at a certain point, the nMOS switches off. 
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CASCADE OF TG 

Let’s consider transmission gates in series, so we have a cascade of switches. If we close these switches, 

the delay between input and output depends on the number of switches in series. Firstly, a TG, since it is 

made of transistors, can be seen as a resistance times a capacitor. The resistance of the switch, with sizing 

(1)n and (3)p, is more or less the Req(1)/2, but as for the capacitance it is Cint(1) = 2 fF. 

However, we have to consider that we have two switches in series, so the situation is:  

If we put these in cascade, the delay increases quadratically, since we have an RC network. It is the same 

reasoning done with the wire and the Elmore theory. This is why we cannot cascade TG without using 

inverters.  

How many TG can we afford to cascade without a buffer? 

It is the same theory done for the wire in how many splits we have to cut it. Let’s consider N TGs, and 

m is the number TGs per stage. So we have N/m stages. 

To simplify the analysis, let’s suppose to use minimum size inverters ((3) – (1)) and the TG is the 

combination of transistors with aspect ratio (3) and (1). 

Rinv of the inverter is Req(1) and Cint = Cint(1). Since we are facing two TGs, C = 2*Cint(1), while R 

= Req(1)/2. 
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If we have N/m pieces, we can sum the delay of each piece and inside of each stage we can apply the 

Elmore delay formula. We have m*C and then we have the delay of the TGs, which increases 

quadratically with m, and then we have the combination of all the resistances of the TG that drive the 

final inverter. 

So we get a delay that is a function of m. which is the optimum value for m? We need to derive the delay 

with respect to m. 

We get a final m_opt = 2. So in a single stage we can put two TGs and this leads to the best propagation 

delay with this sizing and parameters. Then we need to buffer, otherwise the delay increases. 

 

RECAP 

 

In the inverters sometime we see L, which means ‘low skewed’. These inverters, in order to improve the 

performance of the gate, have a switching threshold that is not in the middle but smaller than Vdd/2 to 

enhance the pull up, because at the beginning the PU is performed by the pass transistor network, then 

the restorer comes into play and to speed up the turning on of the pMOS, we can size the inverter with a 

switching threshold below Vdd/2. 
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SEQUENTIAL CIRCUITS 

A combinational circuit is a circuit for which the output is a function of the input at that time stamp. 

Neglecting transients, assuming that the combinational circuit has a propagation delay of 0 (tau_p = 0), 

so there is no memory, in the sequential circuit we have memory implemented using flip-flops rather than 

latches. 

It is an example of finite state machine, it is a mixture of a combinational part and a memory in feedback. 

In reality, inside the combinational logic circuit of the sequential logic we have two circuits; one is the 

logic for the output, the other is the state logic. These two are made of gates and fed by the real inputs 

and the output of the memory element. 

The memory element serves the role of creating a state for the machine. The bits that enter the state are 

called next state, while the output of the state is the current state. 

 

If we consider that a sequential circuit needs a synchronization signal, i.e. a clock, let’s suppose that the 

register ‘state’ samples the signal on the rising edge of the clock, storing in this instant the value. 

Let’s consider the behaviour of the overall circuit. The two blocks in the combinational logic are fed by 

the inputs and the current state. As for the output, we have two outputs; the real output of the circuit but 

also the state of the circuit. So at every rising edge of the clock we assess the output combining the inputs 

and the current state generating an output and a next state. The next rising edge of the clock the next 

state becomes the current state and the current state is evaluated together with the inputs and so on. So 

the ‘state’ path behaves as a delay element. This kind of memory is also called foreground memory. 

 

LATCH AND FLIP FLOP 

A foreground memory is a memory embedded in some combinational logic to implement a finite state 

machine. This is a way to differentiate it from the background memory, like SRAM, DRAM, FLASH. 

The difference is in the quantity of bits we can store. Foreground is in the order of kbits, background Mbit 

or Gbit. Moreover, the delay of foreground is in the order of ps, of background in the order of ns or even 

us. 

 

Moreover, flip-flops are very cumbersome and large, while SRAM and DRAM are very small, of 6 or 

even 1 transistor. The most important application of flip-flops is in pipelined circuits. 
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LATCH 

The main difference between latch and flip-flop is that the latch is a level-sensitive device, able to store a 

bit when the clock is one or zero, so we distinguish positive or negative latch. The positive latch stores 

a bit in the whole period where the clock signal is high; the negative latch is a device that operates in a 

complementary way, able to store a bit for the whole period of time where the clock is 0. So for a positive 

latch we can distinguish: 

- Transparent phase: clock = 1, so the output is equal to the input. 

- Hold phase: clock = 0. 

 

If we have a negative latch, it is indicated with a circle at the clock input. Now the latch is transparent 

when clock = 0. As in the positive latch, the last value stored remains in the hold phase, then when clock 

= 0 we are back in the transparent phase, and we follow the input. 

So it is clearly a level-sensitive device. 

 

FLIP-FLOP 

It is an edge-triggered device, and we can have positive or negative edge-triggered flip-flops. Positive 

means that the device samples the input signal on the rising edge of the clock, viceversa on the falling 

edge for negative edge-triggered flip-flops. 

Its symbols resembles a latch but it has a triangle on the ck line. 

 

Positive edge-triggered flip-flop 

At the first edge, since it is the first one, we don’t know the value of the output before the rising edge, but 

I’m sure that after it we sample the next value, which is a 0, and it remains 0 for all the clock period. in 

correspondence of the second rise edge I sample the second value. Then I have a third rising edge, and 

the sampled value remains 1. So we sampled 3 values. 
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Negative edge-triggered flip-flop 

The input is unknown up to the first falling edge, and at that point the output is 1 and it remains like that 

up to the next falling edge, where I sample another 1. So the behaviour is completely different depending 

on the sensing edge. 

These are ideal behaviours. 

 

MASTER-SLAVE FLIP-FLOP CONFIGURATION 

The flip flop is implemented combining two latches in cascade in the so-called master-slave configuration. 

We put in cascade two latches with opposite polarity (positive latch and negative one in the image), 

leading to a negative edge-triggered flip-flop. So the second latch defines the kind of flipflop. The second 

latch is fed by clock_bar, so for clock = 0, the second latch samples the input. 

 

The intermediate node Qm is the output of the first latch, that is a positive latch. So in the hold phase the 

output remains steady for the master latch. Now it is very simple to assess Q since Qm is the input of a 

negative latch, but for the whole period gray in the last plot the Qm is unknown, and Q = Qm. 

So the signal at the bottom is like having sampled the signal D at the falling edges of the ck signal. 
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Example of finite state machine (FSM) 

 

There are two kinds of FSM: Mealy and Moore. If the output is a function of only the current state we 

are dealing with Moore FSM, while if it is the function of both the inputs and the current state we have 

a Mealy machine. 

State register is a flip flop that stores the input, not just a single bit but a bus of n bits. 

 

The difference between the Mealy machine and the Moore one is that the output in the case of Moore is 

function only of the current state. 

We will use Moore machines to implement counters and frequency dividers. 

 

Example of sequential circuit (FSM) – 2 

In this case we have a single bit input also sampled by a flip flop; the single AND gate is the output logic 

and the state register is made only of a single flip flop. The output is function of the sampled input and of 

the current state. This is a Mealy FSM. 



171 
 

Let’s see how the circuit works. Ck is the synchronization signal, and the flip flops are positive sensing, 

so sensitive to a high transition. P is the current state, F is the sampled input (corresponding to the next 

state). 

 

When I sample the first one, the operation of sampling takes some time, so we have a delay with which 

F goes to 1. This delay is not from the input to the output, but from the rising edge to the output. 

As for P, P is the sampled version of F. 

 

If we compare F and P, they are shifted in time by a clock period. This is the effect of the flip flop presence, 

which is a delay element. 

As for the output, it is the output of an AND gate, so only when P and F are 1. Hence this machine is 

able to recognize when there are two ones in cascade in the input signal. 

With a simple combinational circuit we cannot recognize two 1 in series, we need for sure a memory 

element. 

To recognize two zeros in cascade we need instead a NOR port. 
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TIMINGS 

 

The presence or the absence of the circle in the clock line identifies the type of flip-flop (positive or 

negative). With the circle we have a negative edge triggered flip flop, and the same for the latch. 

Since the behaviours of the flip flop and latch are completely different, they are characterized by different 

propagation delays. In the case of FF (flip-flop) we have just one propagation delay from input C to 

output Q. So the input signal on D is transferred at the output after a delay t_C→Q. Time is evaluated 

starting from the edge of the clock. 

Let’s suppose that the input is 1, and the output is 0. Once the clock transitions from low to high, the 

output Q goes to 1 with a delay t_C→Q. Since the FF is an edge triggered device, the delay is assessed 

starting from the edge of the clock. 

 

Instead, the latch is able to copying the input signal for all the time when the clock is 1 (if positive latch). 

But it can happen another thing. Let’s suppose that D transitions during the period when ck = 1, and it 

goes e.g. from 1 to 0. The input is updated but not with a delay t_C→Q, but t_D→Q. 

 

FLIP-FLOP CHARACTERISTIC TIMES 

Let’s consider a positive edge triggered device. This device samples the input signal in correspondence of 

the rising edge of the clock. To work correctly, the FF has to satisfy some conditions; since it is edge 

triggered, it is able to sample the input signal in correspondence of the raising edge, but t_su has to be 

satisfied, so the input cannot change too close to the rising edge of the clock, so the input data D must be 

stable in the period of time before the rising edge → must be steady to correctly acquire the signal. This 

condition is called setup condition, and t_su is the setup time. If data changes, two things can happen. 

Either the data is not sampled correctly, so we are not able to update the output, or the propagation delay 

becomes too large. So t_su cannot be nihil and must be > 0. 
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Another condition has to be fulfilled; the data must be stable also after the rising edge for a time t_hold. 

This means that around the sensitive edge of the clock the data must remain stable, otherwise the FF 

isn’t working correctly. 

If this condition is verified, after a propagation delay tC→Q the data is updated at the output, from the 

sensitive rising edge. 

 

T_hold can be positive or a ‘negative time’ or 0. 

 

MAX DELAY CONSTRAINT 

 

The depicted FF indicates an array of parallel FFs with ck signal in common. 

On the first rising edge of the clock, the first register samples the input signal, but in correspondence of 

the same rising edge of the clock, the receiving FF samples the signal on D2. 

After a delay t_C→Q the output Q1 is transitioning (the cross in the plot indicates the bit transitioning). 

Then we have the combinational login in input that process Q1. After a propagation delay tau_p of the 

logic we have the signal available at D2. D2 is a single bit and it transitions at x. 

 

The receiving FF has to sample D2. On the second rising edge, the FF at the end of the chain has to 

sample the signal. But in order to correctly acquire the signal, D2 must transition a setup time before the 

ck rising edge. 

So in a clock period we have to: sample the input signal, process the input data through the combinational 

logic and be in advance of a setup time before the second rising edge of the clock. 

 

Let’s suppose to have 3 FFs in input, and the following combinational 

logic. In this circuit we have 2 delays, not just one, because it depends on 

the signal path we are considering. T_logic,max is the worst case delay 

of the combinational logic. 

 

x 
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Moreover, the inequation of the previous slide sometimes is rewritten re-arranging the terms. 

 

Tcq + Tsu is called sequential overhead. So it there exist a minimum clock period. 

If we establish a ck period and we designed the FF with Tcq and Tsu, the logic block must have a defined 

delay according to the formula above. It is a different way to see the same thing. 

In the end, the sum of Tcq and Tsu reduces the bitrate. 

 

MIN DELAY CONSTRAINT 

It refers to the hold time of the FF. We can consider the circuit of before, just with a different layout. 

Let’s consider the same rising edge of the clock and what the two FFs are doing in correspondence of this 

rising edge. The first FF, F1, is sampling the signal in input, and F2 is sampling D2. After a while, D2 

changes. Since a FF has a hold time constraint, D2 cannot change too fast, otherwise F2 is not acquiring 

correctly the signal at its input. If F2 has Thold > 0, the condition in the slide must be verified. 

Conversely, if Thold <= 0, there is no constraint.  

 

What happens if we don’t respect the min-delay constraint? 

Let’s suppose Tcq = 20ps, Thold = 40ps and T_logic = 0 (so there is no logic). In correspondence of the 

rising edge, the first FF samples the input signal, and F2 samples D2. 

Due to the selected times, the D2 is updated from 0 to 1 after 20 ps and F2 is not writing a 0 at the output 

but a 1, so we are committing a mistake. 

So it is like the input is passing directly to the output, but this is due to the fact we are violating the 

minimum delay constraint. 

 

We have two possible solutions: 

1. Design a FF with Thold < 20 ps. 

2. We add a delay, e.g. two inverters in cascade. 

 

Example – pipelining a circuit 

We have two inputs, A and B that are digital words (i.e. not a single bit). The two digital words are 

summed and they pass through a block that assess the absolute value, and then another block that 

performs the logarithm. These three blocks are the combinational logic. 

So we have Tcq, Tadd, Tmod, Tlog and Tsetup. How much is the maximum operating frequency of the 

circuit? In a clock period we have to do 3 operations: sampling the input signal, processing it and being 

at the output Tsetup time before the sensitive edge of the clock. 
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For the sake of simplicity, let’s suppose that the 3 times of the logic block are equal and equal to T. Let’s 

suppose also that Tcq is much smaller than T, as well as for Tsetup. This means that the sequential 

overhead is negligible with respect to the propagation delay of the logic. The maximum operating 

frequency of the circuit is 1/3T. 

 

Let’s add registers in the circuit at the output of each combinational circuit. For each part we have to 

satisfy the min and max delay constraints. 

 

Since constraints have to be fulfilled in each part, the worst critical circuit is the one related to the worst 

delay, and since the circuits are the same it is the same and unique. 

The maximum operating frequency if the sequential overhead is negligible, so Tcq << T and Tsu << T 

is 1/T, much greater than before, we gained a factor of 3 in terms of propagation frequency. 

The disadvantages are in terms of area, since we are adding FFs, then also power consumption and 

latency, because in the previous case after one ck period the signal was at the output (two clock rises), 

while in this case after one clock period we have available only the result of the sum of A and B. It doesn’t 

take more time, but more clock cycles for the signal to reach the output. 

 

However, this last circuit has a bigger throughput, we have more bit per second. 

 

PHYSICAL IMPLEMENTATION OF A FLIP-FLOP 

It can be built combining two latches in cascade, so we need to implement a latch first. 

We can implement either a static or a dynamic latch; the former is based on a bistable element, which 

are two inverters in cascade. 

Instead, dynamic implementation relies on storing a bit charging or discharging a capacitance by means 

of a switch. 

 

 

 



176 
 

 

Bistable element 

It is the mechanism used in the static latch; two inverters in cascade represent a positive feedback loop. 

X is the inverse of the static characteristic of the second inverter. 

Then we put the two characteristics on the same plot. We have 3 working points, which are the possible 

bias point. For sure, point A corresponds to Vi2 = Vo1 = Vdd, and Vo2 = 0V. Point B corresponds to 

have Vi1 = Vdd, Vo1 = 0V and Vo2 = 0V. A and B are two stable points; if we apply a small variations 

of these points, the circuit is able somehow to regenerate the circuit and go back to the original point. 

 

For point C we have Vm everywhere, so each inverter is biased at the switching threshold. Now, if the 

variation of threshold for Vi1 is slightly positive, Vo1 goes to 0V, and Vo2 = Vdd; consequently, Vi1 = 

Vdd. Hence working point C collapses towards VB. Viceversa if the variation of Vm is negative, we move 

towards A. So the condition with all the inverters biased at Vm is unstable, it is a metastable solution. 

 

 

 

 

x 
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MULTIPLEXER-BASED LATCH 

Let’s use the bistable element to implement a latch. Let’s add a multiplexer to the two inverters in cascade; 

the multiplexer allows the bistable element to be transparent or opaque. If we look at the image, when ck 

= 0, the bottom path that connects D is on, and the loop is cut. Instead, for ck = 1 we have a loop, so two 

inverters in feedback loop (positive feedback). In this latter case we have a bistable element. So the 

multiplexer allows to cut the loop, making the latch transparent, or closing the loop, making the latch in 

the hold phase (opaque), because the loop is not connected to the input and any variation of the input is 

not sensed. 

 

For the negative latch, during the hold phase ck = 1, in pass transistor logic implementation without 

inverters we have, in an electrical model we have that the blue circle is like a capacitor. So this is a circuit 

that is not reliable, because we don’t have a low impedance path to Vdd or ground, so with digital noise 

present the circuit can fail. So to the reason to use two inverters is to have a static gate. 

Real implementation 

In this case we recognize a positive static latch, because the circuit is transparent when ck = 1 and we 

have the two inverters. The multiplexer is based on TG implementation. 

 

The inverter after D is not needed, but it acts as a buffer to read the voltage at D as high impedance. It is 

not mandatory for the correct work of the gate, but needed to avoid an increase of the delay that is 

quadratically increasing with the number of transistors. 
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For a single latch we are using 3 inverters and 2 TGs, so 10 transistors. So large area and power 

consumption. 

Moreover, in this case, we have 4 transistors connected to the clock, plus the inverter to generate ck_bar. 

So to ck and ck_bar we have 6 transistors connected. Ck and ck_bar transition every clock cycle by 

definition, so with switching activity of 1, so the capacitances connected to them have a particular 

importance in terms of power consumption. They represent a figure of merit of the latch. 

 

Alternative implementations 

 

In the first case, the difference relies in the multiplexer, which is made of only nMOS transistors (the two 

in the image). This leads to some benefits, such as smaller area and power consumption. There are 

however some issues. In fact, we have only nMOS transistors, and the PU is compromised. 

Let’s suppose to have Vdd in input D, ck high (so x is closed), while the other nMOS is open. At node y 

we have a capacitance and it can charge up to Vdd – Vth* affected by Body effect. The output of the first 

inverter goes to 0V and the output to Vdd, if y is above threshold. 

So the bit in the latch is correct, but we have cross conduction current in the first inverter, so I reduced 

the dynamic power consumption but increased the cross conduction current. Moreover, the PU is slow, 

so we have problems in terms of propagation delay (Tcq is worsened). 

 

As for the other bottom implementation, we have the bistable element but only one switch. If the switch 

is closed we have a bistable element (two inverters in feedback loop). The problem is the writing of the 

latch in the transparent phase. We have a negative latch (switch is on if ck = 0). We have a problem 

because after the switch we have both a low impedance and high impedance path. Let’s suppose we wrote 

a 0 and we want to write 1. At the beginning we have the following situation. 

 

From Vdd to ground we have a voltage divider, actually. The 0V in the middle must be pulled up up until 

the switching threshold of the inverter of the forward path. 

So the two transistor of the PTL must be stronger than the PD to win the PD and bring the voltage in the 

middle up to the switching threshold of the inverter. So it is a ratioed solution. 

So the switch (and eventually the inverter before it to decouple the impedance) must be stronger than the 

feedback loop to write the latch. 

 

x 

y 
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The bottom topology is powerful in terms of number of transistors connected to ck and ck_bar, only 2 

(like in the one at the top). Moreover, it is very similar to what we will see in SRAM cells. 

 

MASTER-SLAVE STATIC FLIP-FLOP 

We put in cascade two latches; in this case the master is a negative latch and the slave is a positive latch. 

We get a positive edge triggered FF. 

 

The slave establishes the type of FF. Actually, to implement the bistable element we need two inverters 

in the loop of the latches, as seen before. Then we also need buffers before the TG switches, and another 

one to implement ck_bar. In the image the MUX have 0 and 1 inverted, it is like having them the same 

and driving with ck and ck_bar one and the other. This is in the end a FF, able to store a single bit, and 

it is made of 22 transistors (a lot), so FF are used only for foreground memory, not background memory, 

to store only a limited amount of bits. 

Let’s now assess the characteristic times of the FF, setup, hold and propagation delay. 

 

As a first remark, it is very difficult to assess them because: 

- Definition of setup time Tsu is complicated, too generic. 

- Once we have transistors in cascade, the propagation delay is difficult to be assessed. 

Let’s suppose to have blocks with a propagation delay that is Ttg (for the transmission gates) or Tinv (for 

the inverters), for the sake of simplicity. 

 

Setup time Tsu and Tcq 

Let’s start from the setup time. Since we have different inverters with different loads we need to 

distinguish between one inverter and the other (Ti1, Ti2, …), and the same for the gate. 

The setup time is the time the signal needs to remain stable in order to acquire correctly the signal. The 

sensitive edge of the ck signal is the rising edge. 

Before the first edge, the first latch L1, being negative, is transparent. When ck = 1, the L1 becomes 

opaque, and the opposite for latch 2 (L2). 

When transparent, switch T1 is closed, and T2 is open. Let’s now suppose that 1 is stored at x, and D 

transitions from 1 to 0 before the rising edge of the ck signal. 

 

How much close can we put the D change to the rising edge of the clock?  

It’s a matter of assessing the propagation delay of the circuit. In fact, we want that when the ck signal 

transitions from 0 to 1, all the signals in the master latch are transitioned, so that when the rising edge of 

the clock happens the loop has been written correctly. 

I need to guarantee that before T2 switches on, the signal from the input D has reached the output of the 

inverter 2. So Tsu is equal (better greater) to the delay of the inverter 1, the TG1 and the inverters 3 and 

2. 

x 
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If not, and the edge is too close to the edge of the clock, we are not able to correctly toggle the inverters 

and we are not sure about the logic level we are storing. 

 

If the previously mentioned condition is fulfilled, once T2 closes the data is stored correctly and the output 

of I3 can reach the output, because the second latch (slave) becomes transparent. 

Now we can assess the propagation delay starting from the edge of the clock for L2, because the signal 

in input to L2 is stable if the constraint is fulfilled. 

 

From when the clock transitions from low to high to when also Q does this, the delay is considering the 

Ti4 + Ttg + Ti6, but if Tsu is very large, so i4 is very fast because Ti4 < Ti2, Ti4 can be neglected, because 

we have already Vdd at the input of the TG after i4. 

So if Ti4 < Ti2, the propagation delay is made just of 2 terms. 

 

In the end, what counts is the sum of Tsu and Tcq. This is a very reliable FF but also very slow, because 

the delay is very large due to the lot of elements in cascade. 

 

Thold 

Thold is how much I have to keep the data stable at the input after the rising edge of the clock. When ck 

transitions from 0 to 1, T1 turns off. Once this happens, for how much do I have to keep the data stable 

at the input? Since we have inv1, the hold time is negative, because the input can change before the 

transition of the clock because the inverter is not transitioning up until a time Ti1, so the latch is 

insensitive because it takes a delay Ti1 to reach the input of the TG1. 

 

If we remove inv1, the Thold = 0. 

 

If we violate the Tsu or Thold condition, either the signal is not acquired even if the signal transitions 

before the sensitive edge (if Tsu is violated) or the signal is acquired but it transitions very slowly, so the 

propagation delay explodes. 

 

DYNAMIC FLIP-FLOP 
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The first one is a negative dynamic latch, the second one a positive one. The inverter I1 acts as a buffer, 

so both the latches are inverting. 

Let’s focus on the first latch. It is like a switch, a capacitance and a buffer; the basic idea is to store the 

bit as a charge across the capacitance. The advantage is that we have 4 transistors per latch, and moreover 

ck and ck_bar have to feed only 4 transistors. The second latch is positive because the switch closes when 

ck = 1 (latch becomes transparent). So the greatest advantage is the smaller area than static FFs. 

 

Furthermore, this implementation is much faster than the static FF, in terms of sequential overhead (i.e. 

the sum of Tsu and Tcq). 

 

It’s called dynamic because since its working principle is the charge storage over a capacitor, which must 

be saved when the switch is off, when we have a floating capacitance. But since there are no ideal 

capacitances and switches, the capacitor is a little discharged with a RC discharge and leakage current. 

The leakage current is the drain-substrate diode leakage current, together with the transistor subthreshold 

leakage current. 

 

C1 is a parasitic capacitance, that in our technology (0.25um) is 4 fF (2 fF for the inverter and 2 fF for 

the TG). Obviously, the larger the capacitance the larger the time it requires to be discharged by the 

leakage current. It is called dynamic because the capacitor has to be refreshed continuously. If we read 

the FF, we also refresh the content of the capacitor. It is a concept that will hold also for the DRAM. 

So ck has to be provided to this circuit to refresh them, otherwise the content is lost. 

 

There is another drawback. There is no low impedance path to Vdd or GND at every time instant, and 

so a floating capacitance can be aggressed by an aggressor, e.g. a nearby transitioning wire. 

 

Let’s assess the three characteristic times for the positive latch. 

 

For Tsu we need to grant that the charged is stored in the capacitor, so it is the delay of the TG. 

Instead, Thold is 0 because once T1 is open, as soon as it opens, the input D can change but we don’t 

care because the switch is off and nothing happens in the circuit. 

 

In this case the overall delay includes two TGs and two inverters, only 4 contributions with respect to the 

6 of the static FFs. But this is not a fair comparison because in the dynamic implementation we are 

missing two inverters (which are not mandatory for the correct working of the gate but helpful). 

 

So let’s consider the setup condition in case of ideal D input signal and no buffers I1 and I4 in the static 

FF. I4 delay was already absent in the formula. So in any case, even if we remove the buffers, we have a 

larger sequential overhead in the case of static FF, because of the working principle of the latch in this 

implementation. 
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Now, coming back to the dynamic FF, which is the function of I1 and I3? Why not remove them to spare 

area and power consumption? 

Without them, the situation would be the following. 

 

In this case, charge sharing occurs and at the end of the day on the last capacitance I have Vdd/2 if the 

first capacitance is to Vdd and the last one to 0V. And this is not working. 

Even if the first capacitance is 100*C and the second is C, after charge sharing we have Vdd on the second 

capacitor, so it is good, but if we have other stages it is a nightmare. So the buffer is needed for sure. 

 

What happens if the signal transitions very far from the edge? 

The Tsu condition is not violated, but Tcq is not the same as before. Not only we reach C1, but there is 

also time to reach the output of I1. Then, on the rising edge of the clock T2 closes and we need to travel 

only across T2 and I3, so Tcq is smaller because the Ti1 has to be considered negligible, because the 

transition of D has occurred very far from the edge, so there is time for the signal to reach the point at the 

output of I1. 

 

Problems 

In general, for both static and dynamic FFs, we have some problems. For instance, ck_bar is generated 

via an inverter, which however is generated with an inverter with delay. So there is a time where ck and 

ck_bar are both equal to 1 or 0. 

So ck and ck_bar are not synchronous, there is always a delay. 

Clock overlap issue 

Static FF 

The first one is a positive latch (transparent when ck = 1) and the second is a negative latch, so we have 

a negative edge-triggered FF. 

Due to the overlap (1-1 in the first case), we have the following behavioural standpoint, with all the 

transistor closed. 

 

The main problem is that there is a direct connection, if we neglect the feedback because it is e.g. not too 

strong, between the input and the output. This is like sampling the input of the non-sensitive edge of the 

FF, which is a very bad misbehaviour. 
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Instead, in the case of overlap 0-0, since the MUX is made of only nMOS transistor, we don’t have 

bistable elements in cascade, because the feedback is off because all the switches are open. Hence we are 

violating an essential condition for static gates, since there is no low impedance path that connects the 

output to either Vdd or GND. So during the overlap 0-0 we have a dynamic gate. 

If we had clocks without the 1-1 overlap (the 0-0 is not a big issue, so it can be present), we are good, and 

this signal can work only for this FF with nMOS in the MUX. 

 

Dynamic FF 

Negative latch and positive latch, so it is a positive edge triggered FF. In this FF, 0-0 overlap can be a 

problem. In this case, the TGs have the nMOS off and pMOS on, so I have a path from the input to the 

output. If the overlap 0-0 is large enough, we sample the input signal in correspondence of the negative 

edge. Let’s sketch the overlap and a signal that transitions across the overlap. 

 

If the FF works correctly (without 0-0 overlap), a transition in the middle between two rising edges is not 

sensed. In this case, before the 0-0 overlap, when ck = 1 and ck_bar = 0, T1 is off and T2 is on, so the FF 

is working correctly. 
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During the overlap, ck = 0 and ck_bar = 0, so the T1 has the nMOS still off, but the pMOS is on, while 

for T2 the nMOS is off and pMOS is on → direct connection between D and Q. 

Now, if the signal D is able to reach the second latch on C2 (during the overlap duration), so if T_00 > 

Tt1 + Ti1 + Tt2 (Tt1 and Tt2 are the delays of only the pMOS transistors, not of the TG), the signal on 

C2 is sampled. 

However, the voltage has been sampled on C2, and so the signal is free to travel to the output. So the 

output was 0, and it goes to 1. So the signal D is sampled, and this is completely wrong, because we are 

sampling it in correspondence of the non-sensitive edge of the FF. 

 

Moreover, this FF is subject to a misbehaviour also in the case of the 1-1 overlap. Let’s 

consider a signal that transitions immediately after the positive edge of the ck. It is not 

sampled if we have a correctly working FF, but in our case we can suppose to have a 

large overlap. 

When ck = 0 and ck_bar = 1, T1 is on and T2 is off. After the ck rising edge, ck = 1 

and ck_bar = 1, so the nMOS of the TGs are on, the pMOS are off. 

During the overlap, D transitions. Then, in the last period of time when ck_bar = 0, the 

T2 is on and T1 off, so the second latch becomes transparent in both the pMOS and nMOS transistors. 

 

It is enough that we reach the point on C1 and the misbehaviour occurs, because even if the first latch 

becomes opaque, the value on C1 is transmitted along the chain to the output. Hence the condition is 

more stringent. So if T_11 > Tt1 we have a misbehaviour. 

To solve this issue, we can set a Thold for this FF, saying that Thold = T_11, to ensure that the signal is 

not transitioning in the overlap period (for positive edge triggered FFs). 

However, we cannot do anything for the 0-0 overlap. So we need to implement a circuit that is insensitive 

to the clock overlap. We have two alternatives: 

- C2MOS: the problem is solved with a different disposition of the transistors, so it is a dynamic 

implementation with 8 nMOS transistors with a different arrangement. 

- True singe phase clock FF (TSPC): we use just a single clock, not ck_bar. Also this one is a 

dynamic implementation. 

 

C2MOS FLIP-FLOP 

The implementation is always master-slave and it is based on tristate inverters. The first one is a classical 

inverter if ck = 0, so it is a negative latch. Conversely, the second one is a positive latch, since it is an 

inverter if ck = 1. 

For the master stage, with ck = 1 it is in hold phase, viceversa the slave stage for ck = 0. 

Let’s now verify that the C2MOS FF isn’t suffering from clock overlap. 

 

0-0 overlap 
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So we have a positive edge triggered FF, so the most problematic overlap is this one, since the sensitive 

edge is the rising one. 

 

Before the transition to 0, M4 and M3 and M7 are off. the first latch is opaque, so even with a transition 

of D nothing happens, and this is the normal behaviour. Then we enter in the 0-0 overlap. D in the 

meantime has transition from 1 to 0. The situation is the one depicted in the image above. Signal D 

cannot reach Q because X can only be pulled up, since we have a PUN attached to it. But if X is pulled 

up, the second PUN switches off, so Q remains floating. Since we have to PUNs in cascade we cannot 

have a cascade from input to output, because two PUNs cannot be turned on at the same time. Hence 

the signal D is not sampled by the output Q. If D instead transitions from 0 to 1 we switch off the first 

PUN. 

 

1-1 overlap 

 

The two PDNs are on depending on the signal. If D transitions from 1 to 0,  M1 is off and we are not 

sampling D, so X remains floating and nothing occurs. If instead D transitions from 0 to 1, the first PDN 

is on and X is pulled down. If so, the second PDN is deactivated, so Q is not changing. 

 

So it seems that the issue has been solved. X has been pulled down during the overlap, because the overlap 

is large enough, so Q is not transitioning. After the overlap, ck_bar = 0 and ck = 1. Consequently, M8 

turns on, M6 is on and we are writing a 1 in the output, a 1 related to the D transition. 

 

So we have solved the 0-0 overlap but not the 1-1 overlap when the input transitions from 0 to 1. The 

only solution we can exploit is to set a Thold to be Thold > Toverlap_11. 

Hence the overlap issue is solved completely for the 0-0 overlap, the 1-1 only setting a hold constraint, 

not only due to the design of the FF. 
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TRUE SINGLE PHASE CLOCK LATCH (TSPC) 

Positive latch 

When ck = 1, the two nMOS transistors are on, so I have the combination of 2 inverters in cascade, so 

the input is sampled on the output capacitance. When ck = 0, the nMOS are off; if In = Vdd, the pMOS 

is off, but since the transistor in the middle is off it’s like if the latch is opaque, so nothing is transferred 

to the output. In case of In = 0V, it is the nMOS at the bottom to be off and the internal node is pulled to 

Vdd. On the second part, the nMOS is on but the intermediate nMOS is off, hence the output is a floating 

capacitor. 

 

Negative latch 

For ck = 0 we have two inverters in cascade and the input is sampled on the output node. 

For ck = 1 we are in the opaque phase; the two pMOS transistors are off. For In = Vdd, the pMOS on 

top is off, the nMOS on the bottom is on, the internal node is pulled to 0V and consequently the second 

stage has the pMOS on and the nMOS off, so the output is floating. 

For In = 0V, the output is not directly connected to the input since the nMOS is off and the pMOS that 

is on is not directly attached to the intermediate node, and consequently the output. 

 

Let’s try to change the connection. From a logical standpoint this circuit is 

working, because for ck = 1 it is a transparent latch. For ck = 0 the two 

transistors in the middle are off; if In = Vdd, the output is connected to two 

transistors that are off, so it is in the opaque phase. 

 

However, the previous topology is much better than this one because the 

intermediate node in the second case is not full swing. 

In fact, if ck = 1 and we are in the transparent phase, let’s consider 0V as input. 

The nMOS at the bottom is off and the pMOS and nMOS top and middle are 

on, and the intermediate node reaches Vdd – Vtn* that is 1.8V more or less. 

The output voltage, actually, is close to 0V; moreover, also the pMOS at the top of the second stage and 

the middle nMOS are on, so we have a cross-conduction current (static power consumption). 

Moreover, since the intermediate node is not fully driven, we have worsen reliability and the propagation 

delay of the latch is compromised when pulling down the output node because the output stage is not 

fully driven. 

 

In this circuit (if we connect them in master-slave configuration) the clock overlap problem is solved. 

Furthermore, we have more transistors than the C2MOS topology which, however, is not solving the 

clock overlap issue. 

 

Let’s assess the characteristic times. 
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The storage capacitance in the image are parasitic capacitances, and we need to store the signal on them 

to have the correct working of the gate. 

The setup time is the propagation delay of the two inverters of the positive latch, because we must have 

a stable signal stored on the intermediate capacitance (output node of the first latch) before the falling 

edge. The worst case is with 0V in input, not Vdd. 

 

As for Thold, for sure it cannot be greater than 0, because there is no sense in keeping the value stable 

after the falling edge. Thold = 0 in the worst case, which is the one with In = Vdd. 

 

As for Tcq, we have just to reach the output from the middle position, so we have the delay of the second 

latch. 

Can we spare some transistors in this topology? Yes. 

 

TSPC split output latch 

We have 10 transistors to implement a FF, and only 2 connected to the synchronization signal (clock), 

which is an important figure of merit in terms of power consumption. 

Being a latch, we have always to consider the two phases: 

- Ck = 1. The positive latch has two inverters in cascade and it works, we are in the transparent 

phase 

- Ck = 0. We are in the opaque phase. We have two PUN in cascade and two PDN in cascade (not 

in series). The cascade of 2 nMOS transistors cannot have both the transistors on at the same 

time, so one has to be off, and it’s ok. 

 

The drawbacks are in the phase where ck = 1, that is the transparent phase. When the input is 0V, the 

intermediate nMOS is on, node B is able to reach Vdd (full swing), but A reaches Vdd – Vtn* = 1.8, so it 

is not full swing. When instead the input is Vdd, node A is at 0V, and the voltage on B is pulled down to 

0V, because we have two nMOS in the pull down path (pMOS transistor is off). 

So the problem is in the PU, when A is not able to reach Vdd because we have an nMOS in the middle. 
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Since 1.8V is above the threshold of the inverter, the output is exactly 0V because the top pMOS is off, 

and since there cannot be current in the series, the output reaches exactly 0V. 

 

In any case, we have reliability concerns and dynamic performances worsened, because the PD is 

performed by a nMOS that is not fully driven (large equivalent resistance). 

Since the delay is increasing, we are worsening the setup time and Tcq (for a different phase of the input 

signal). 

 

The negative latch has a similar behaviour than the positive one, and when ck = 0 we have similar 

problem. In this second stage it is the PU that is compromised. Let’s consider the transparent phase for 

the second latch, so ck = 0, and In = 0V. 

The second stage is fully driven and the output node is pulled down to 0V, so perfect behaviour. The 

problem arises when we have Vdd at the input, because A is not able to reach 0V since we have a 

connection to ground via a pMOS and nMOS, so it stops at Vtp*. So it is the pull-up that is compromised. 

 

 

PULSED FLIP-FLOP 

 

So far we have seen FFs implemented with latches in cascade in a Master-Slave configuration, but it is 

not the only way to implement them. 

The signal I connect to the latch is the output of a pulse generator, not the classical square wave, and 

during the pulse the latch is transparent. So we are not combining latches with different polarities. In 

correspondence of the rising edges I have small pulses at the input of the clock for the latch, and the latch 

is transparent only during the short pulse, and opaque in the rest of the period. 

 

I can have a lot of latches in the circuit and I can generate the pulsed clock that is then delivered to all 

the latches. This allows a great saving of area, because it is like if a single FF is implemented with just 

one latch, since the glitch is shared. 

 

The latch can be e.g. implemented with a TSPC latch (on the left of the image below, that is a positive 

TSPC), and the clock with a glitch generation. The input is clk and the output clkg, pulsed clock we 

deliver to the latch. The input is a squarewave signal, the output a glitch signal. There is a delay because 

it is a real circuit. 

 



189 
 

Glitch generation 

So, the NAND and the inverters are used to implement a delay tau_p, and let’s consider the capacitance 

Cp at node X as negligible (fF). 

Let’s consider ck transitioning from 0 to 1. When ck = 0, I have 0 at the input of the AND gate, so clkg 

= 0, so the nMOS on the bottom is of, the pMOS is on and Cp is charged to Vdd. This is at steady state. 

 

On the rising edge, the clkg transitions to 1 after a delay tau_p with respect to the rising edge of clk. The 

nMOS turns on and discharges Cp, so X goes to 0, it’s pulled down. After another delay tau_p, clkg = 0 

again and it happens as before, so Cp is charged to 0V, with both the pMOS and nMOS off. 

 

The situation changes when clk gets back to 1 (after being reset to 0). 

 

Pro and cons 

The FF is implemented with just one single latch, because the glitch generator can be shared. Since it is 

shared, a possible drawback is that it is indeed a short pulse. If the number of latches changes, the pulse 

is not exactly a pulse; because of the short duration, the delay counts a lot. If the load changes we could 

have something that is no more a pulse, so it is harder to generate a short pulse. 

 

The rising edge that counts is the one of the clock, so all the times have to be assessed starting from the 

clk rising edge, not clkg. So also in this case there is a Tsu before the rising edge of the clock, a hold time 

after it in which the data must be stable to be correctly acquired, and the data is presented at the output 

after Tcq. 

How much is Tsu, referring to the rising edge of the clock? 

It is 0 because when ck = 0, also clkg = 0, so there is no reason to keep the data stable, because the data 

is not influencing the output. In reality, Tsu = -tau_p because we can have a transition since the latch is 

not transparent between when the clk rises and when clkg rises, so there the latch is opaque and not 

transparent. So there is a minimum amount of tau_p which must be at least tau_p >= T1 + T2. 

 

How much is Thold? 

2*tau_p, because the latch becomes transparent in correspondence of the pulse, so in the red region. 

 

How much is Tcq? 

Tcq = tau_p + T1 + T2, where T1 and T2 are the delays of the two ‘inverters’ in the latch. 
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LATCH/FF WITH RESET 

Let’s focus on the FF on the bottom. 

Z is a tri-state inverter, that is an inverter followed by a transmission gate. Also x is a NAND followed 

by a transmission gate. 

The second difference is that, instead of implementing the feedback path with two inverters to implement 

the bistable element, we use an inverter as a NAND gate driven by the signal that circulates inside the 

loop and the other input connected to the asynchronous reset. The NAND gate behaves as an inverter if 

one of the two inputs is set to 1. 

 

Let’s verify we can bring the output to zero applying a short pulse to the reset_bar input. 

We need 2 NANDs connected to reset_bar to have the output set to 0 because the FF has two states, 

since made by two latches, negative and positive, one transparent when clock = 1 and the other one when 

clock = 0. This means that we need 2 circuits to be sure that the output goes to 0 because if the second 

latch is transparent, the NAND x is off and so I have just the upper path (when ck = 1), so the circuit in 

the feedback path is not useful to bring the output to zero, so I need the NAND y that is connected 

directly to the forward path. 

 

In the opposite case, when clock = 0, the second TG is off, and the second latch is in hold phase, hence 

NAND y is useless. But in this case the feedback through NAND x is on, and so the output is brought to 

0. 

 

Ck = 0 

The feedback path of the second latch is on. If I apply a small negative pulse on the reset_bar, the output 

of the NAND x goes to 1, whatever the other input of the NAND. If so, the output of the inverter goes 

to 0, which is expected. When reset_bar gets back to 1, the other input has transitioned to 0, so the output 

Q remains to 0. 

 

In this framework, the minimum duration of the pulse is the 

duration that allows the signal reset_bar to transition after 

the NAND and the inverter to reach Q. so it is Tnand + Ttg 

+ Tinv. 

 

The approximation we are making is that the NAND and the transmission gate have independent 

propagation delays. 

 

 

 

 

x 

y 

z 
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Ck = 1 

The first latch is in hold phase (first TG is off), the second latch (positive) is transparent, so the x NAND 

is off and the y NAND is on. If on the reset_bar of the y NAND I apply a negative pulse, the output of 

the NAND goes to 1, the 1 is sampled by the transparent latch and Q goes to 0. 

Also in this case, reset_bar has to be low for a minimum amount of time, that is the one needed to 

complete the loop of the first latch. 

 

How can we implement a set input, or both an asynchronous set and asynchronous reset? 

This is a FF with asynchronous reset, and I want to add a SET_bar input, able to bring the output to 1 

whenever I want, whatever the state of the FF. We need asynchronous inputs for reset or startup 

purposes. 

 

Now we want to add a set input and verify that the set is working in the two cases. 

 

Ck = 0 

L2 is in hold phase, so the small pulse is applied on the set, which goes to 0, so the output of the NAND 

goes to 1 (second blue NAND), the 1 travels and 0 returns in input to the input of the second blue NAND, 

having the output to 1 fixed. 

 

Ck = 1 

Now it’s the master that is working and active, L1 is hold and L2 is transparent. When SET_bar of the 

second blue NAND goes to 0, Q = 1, but it is not fixed to 1 because there is no feedback path. This is the 

reason why the master must work, to fix Q = 1. 
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TIMINGS 
 

CLOCK NON-IDEALITIES 

 

Let’s suppose to have a sequential circuit made of a combinational logic with more than 1 input and the 

output that is received by a FF. all the FF are connected to a ck line. 

 

So far we assumed the ck to be ideal. However, ck is subjected to 2 non idealities: 

- Clock skew: spatial variation in the clock edges. For instance, let’s suppose we have two FF on 

one side of the chip and the receiving FF on another side, far away. In the middle there is a long 

wire, so a delay. So it is like if different FF in the same chip receive a clock signal with a non-

perfectly aligned edges. This delay is called clock skew. There can be either a positive or a negative 

skew. It is positive skew if the clock travels in the same direction of the data, otherwise it is 

negative. Skew can be intentionally used to speed up a pipelined circuit. 

- Clock jitter: it is random noise. The clock period has a mean value and a statistical variation 

around this mean value. 

 

SKEW AND JITTER 

The bold line represents the input ck. Due to the delay of the wire, the receiving FF senses a clock that is 

a delayed version. The difference is the skew, t_sk. 

 

 

The skew relates to the fact that the ck period we measure is sometimes large, sometimes smaller. So the 

delay is deterministic, while the jitter is stochastic, due to noise. 

Both skew and jitter are effective in determining the max delay constraint. The skew affects only the min 

delay constraint (hold constraint). 

 

Origin of the skew 

In this case the clock is considered as generated in the middle, so ideally it reaches the two FF at the same 

time if the paths are equal.  

The ck generates a square wave that passes through an inverter and then wire and to the FF. The 

differences can be in: 

1. Different interconnect, i.e. different wires. 
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2. Different inverters used to deliver the signal to the FF. Nominally they are equal, but due to 

mismatches inside an IC (tolerances in the photolithographic process). 

3. Temperature differences. 

4. Coupling to adjacent lines. We might have parasitic capacitive coupling in one FF and not in the 

other. 

5. Power supply, which is nominally the same but it is distributed through interconnections. If a 

digital circuit has different power supply voltages, the equivalent resistance changes, that is 

smaller when the PS is smaller. 

The main responsible for the jitter is the clock generation, that is the oscillator closed in a feedback loop 

(PLLC). 

 

Precise Setup-hold time definition 

We can consider different transitions of the input D with respect to the rising edge of the clock. Once I’m 

very close to the sensitive edge I’m violating the setup constraint. 

 

When we are very far from the edge, we expect the output to transition in the first time stamp, after Tcq. 

On the bottom we are representing Tcq on the y axis, for different value of t_D-CK on the x axis, which 

is the time between the D transition and the rising edge of the clock. When we are very far, the delay is 

constant; then we get closer and closer and at a certain point we violate the setup constraint. When we 

are too close, Q is not transitioning to 1, it goes up and then immediately 0. This is explained by Tcg 

increasing up to diverging (infinite delay to transition). 
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In literature, Tsu is assessed as the time where Tcq is above 5% the nominal Tcq value. 

 

Instead, the right axis of the following plot corresponds to have D transitioning very far from the rising 

edge, and then going back to 0 closer and closer to the rising edge, violating the Thold constraint.  

 

Also in this case, Thold is assessed as 5% of Tcq value. 

 

(see illustration on slides) 
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ARITHMETIC CIRCUITS 
 

In the data path block (ALU) we can find arithemtic circuits such as adders, multipliers, shifters, digital 

comparators. They are all based on adders. In a digital processor we also have a memory, i/o interfaces 

and the control block. 

 

 

 

ADDERS 

 

Cout is the carryout and it can be also 0. We are adding two ‘words’ of 4 bits. We note that the result is 

a 5-bit word. So if we sum two words of N bits, the result is made of N+1 bits. 

Maybe we also have a carry-in (Cin) coming from another circuit when summing two words. 

 

In terms of HW, to implement the sum we need a circuit that is fed by A0 and B0 and with two outputs, 

S1 and Co,1. This is the half adder. In the remaining bits we have to use a full adder. So an half adder 

receives in input two bits and the result is two bits. A full adder has 3 bits in input and two output bits. 

The worst case is when A, B and C are all 1, because the result is 1 and 1 in output. 

 

So half adder and full adder are the building blocks to implement an adder. 

 

HALF ADDER 

It sums two bits with the same weight, and the result is 

made by LSB, that is the sum, and MSB, that is the 

carryout. The sum goes to 1 when one of the two input bits 

is 1 → EXOR function. 

Since instead the carryout goes to 1 when bot the inputs 

are 1, the logic function that represents it is the AND. 

 

The half adder can be considered a full adder with the 

carry-in = 0. 
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FULL-ADDER 

The outputs are as for the half adder. If we consider the three cases when only one bit out of 3 is 1, the 

LSB is always 1, since the sum of the three bits is with the same weight. Then there are other three 

equivalent cases when two bits are 1. A third case is the one with all 1.  

We can recognize that the sum goes to 1 if we have an odd number of 1 amongst the inputs → sum is an 

odd function. 

 

As for the carryout, it goes to 1 in 4 cases when at least two bits are 1 → carryout is a majority function 

of the inputs, i.e. when we have more ones than 0 in input. 

 

Last column is the carry status. If we look at the first two row, whatever the value of the carry in, the 

Cout = 0, so we are in the delete condition, also known as kill condition. Then we have 4 intermediate 

cases characterized from the fact that A != B. In these cases, Cin = Cout → propagation state, since the 

Cin is propagated in the Cout. In the last two, whatever the Cin value, Cout = 1, so they are called 

generate status, since we generate a Cout = 1 whatever the Cin value. 

 

As for the Boolean function for the full adder, the sum is the odd 

function of 3 inputs. In fact, each of the 3 terms in the odd function goes 

to 1 when one of the three inputs is 1. E.g. the first term is 1 if A = 1 

and B = Cin = 0. So we have the EXOR of three inputs in the end. 

 

As for Cout, it is the majority function; it goes to 1 when we have a 

dominance of 1 amongst the inputs. So if we have at least two 1 in 

input, Cout = 1. 

 

 

Express Sum and Carry as a function of P, G and D 

If G = 1, Cout = 1. If P = 1, which means that A != B, Cout = Cin. If D = 1, Cout = 0 

P, G and D are mutually exclusive, they cannot all be 1. Once one is 1, the other two must be 0. 
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Once we have a half adder and a full adder, we can implement an adder. 

 

THE RIPPLE-CARRY ADDER 

The LSB is on the left, the MSB on the right. 

 

If we consider the circuit as a black box, we notice that Ci,0 is the LSB, and Co,3 is the MSB. The 

intermediate carries are intermediate signals we need to exploit to compute the sum, but they are not at 

the output. 

 

Propagation delay 

In a full adder we can define two different propagation delays: 

- tc is the propagation delay of the carryout signal. 

- ts is the propagation delay of the sum signal. 

The worst case delay is when the carry Co,0 has to propagate down to the last block up to Cout and S3. 

 

The worst condition is that FA1 and FA2 are both in propagate (P = 1), because we need to propagate 

the carry in the full adders. The operation takes 3*tc + ts. 

If tc > ts and N is very big, t_conv = N*tc, but this is not a good adder. 
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It is called ripple carry adder because it refers to the fact that Co,0 has to propagate up to the output. 

It is better to optimize tc because we have N*tc in the formula, so the delay can explode if it is big. 

 

Example of 8-bit ripple-carry adder 

 

If we consider a generic sum bit, with k that spans from 0 to 7, we have the red formulas in the image. 

In the expression of the sum bit and carry bit there are 3 signals involved, Pi, Gi and Co,i-1. We know 

that Pi = Ai EXOR Bi, and Gi = Ai*Bi, and these are fast. 

The problem is the carry Co,i-1, that comes from the previous block. For instance: 

 

P7 and G7 are very fast, available after a gate delay, the problem is Co,6, that in the worst case depend 

on the propagation of Co,0. 

 

In the blue case P_1:7 = 1, while in the green case P_1:6 = 1. So the problem is when we have to 

propagate. 

Inside the blocks of the full adders we have the values of the bits. FA from 1 to 7 are in propagate, while 

the FA0 is in generate carry, and in fact A0 = B0 = 1. 

AND 
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This means that Co,0 goes to 1 after tc but then it’s propagated all the way down to the end of the chain 

with tc between each FA, and so Cout requires 8*tc. The result of the full adder S7 has to wait for the 

Cin to generate, which is 7*tc and then I have to compute the sum, so the delay of S7 is 7*tc + ts. 

This is a typical worst case. 

 

The first FA0 can be in G, D or P, but the worst delay is not changing, whatever the condition of the first 

FA, in any case Co,0. 

 

Non-critical condition 

In the following case, it is not as before. In this case it is not true that the last signal to transition is Cot 

or S7. For this combination of the inputs, Cout and S7 are very fast, because there is a D condition and 

a G one in the intermediate FA, we don’t have propagate in all the inner FA. Cout is very fast, because 

it’s G7 + P7*Co,6. As for Co,6 = G6 + P6*Co,5, and G6 = 1 since A6 = B6 = 1, so we are generating 

Co,6. There is no reason to wait for the propagation of the carry generated by the first FA. This generation 

of Co,6 operation takes tc, G6 goes to 1 after a delay of tc. Then once we have Co,6, it is a matter of 

propagate it, and Cout is available after 2*tc. So Cout and S7 are very fast signal. 

The worst case signal must be searched in some full adders that are propagating the carrier. So S4 can be 

a good candidate, since Co,3 is the propagation, back in the chain, of Co,0. 

This is an example of non-critical condition, because of the presence of D and G in the middle. 

 

Moreover, S5 is very fast, it requires tc + ts because the result of the FA5 is: S5 = P5 EXOR Co,4, but 

Co,4 is very fast since it is deleted after tc, goes to 0. The problem is when the previous full adders are 

propagating the carriers, in this case we have to wait for the propagation. 

 

 

ADDER IMPLEMENTATION 

 

Let’s consider a generic FA and the expressions for the Cout and S. I want to implement it at transistor 

level. Before resorting to transistors, let’s implement the De Morgan theorem, since the Cout and S are 

difficult to implement because they are not inverting, so it is difficult to implement them in FC-CMOS. 

 

So we apply the De Morgan theorem to express them in an inverting form. 
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Cout_bar is like Cout if I complement the inputs. So complementing the inputs of a FA provides the 

inverted function at the output (inversion property). It is just a property of the full adder. 

Now that I have the inverted functions I can implement the FA in FC-CMOS logic. 

 

FULL ADDER IN FC-CMOS LOGIC 

 

If we look at image x, C (Cin) is placed at the top because it is a critical signal and also to reduce the 

intrinsic capacitance of the gate. 

To implement the PUN corresponding to the PDN, we should invert parallel and series, and it should 

not be the one in the image. However, from a logical standpoint they are the same. Moreover, the one in 

the slide is better because sizes are smaller. 

 

Starting from the PDN, we can design the PUN in the image, and we notice it is exactly the same, just 

swapping nMOS and pMOS transistors. We can design similar PUN and PDN because of the inversion 

property. In fact, if we complement the input we complement the output for the full adder, so we can do 

this. In image x, it is indeed like having the same networks but with complemented inputs. So we have 

also simplified the network. 

 

If we look at the circuit in the center, it seems complex but it is a way to condense the usage of transistors. 

 

 

 

 

x 
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The critical path, looking at circuit x, is the one from Cin (C) to Cout. We can verify that once the x Cout 

circuit is generating or deleting the carry, there is no reason to wait for the Cin. In fact, we can have a 

couple of situations. A = B = 1, which is generate, or A = B = 0, which is delete. For the G condition, 

means A_bar = B_bar = 0, and we don’t car about C_bar, since the output is pulled up after tc. In the 

other D condition, correspondingly the output node is pulled down regardless the Cin value. 

 

This is not the best solution because the propagation delay is too large. 

We want to improve this solution to arrive at the so-called mirror adder. 

 

EXPLOITING Cout TO GENERATE S 

The sum is not a function of Cout in reality, but let’s express a k-map where S is expressed as a function 

of Cout. There are a lot of ‘don’t care’ slots because the function is a 3 bit function (8 values). 

For instance, we can have the following don’t care condition, that is never reached, because when A = B 

= 1, Cout = 1, so Cout cannot be 0. 

 

Let’s synthetize some groups of ‘1’, considering also the ‘don’t care’ as 1. 

 

We get the expressions x, to which I apply the De Morgan theorem. 

 

 

 

x 
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Then in order to get Cout I take Cout_bar and invert it with an inverter. In the image the PUN is 

implemented with the dual property, not with the inversion property. 

Also S_bar can be implemented in FC-CMOS, and then we get S with an inverter. 

 

Also for S_bar we implement the PDN with the FC-CMOS theory and then the PUN with the dual 

property. 

We have a huge amount of transistors, 28, which is still an improvement with respect to the initial 32. 

 

As for the carry, if we look at the propagation, we have Cin that is Ci and it has to propagate to x 

(Cout_bar) and then an inverter. So two stages and the first one is complex. So with respect to the FC-

CMOS gate the situation is not so improved. 

 

To further improve, we can exploit the inversion property, at transistor level, while the second 

improvement is at behavioural level (architecture). In both improvements I want to exploit the inversion 

property. 

 

Architectural level – inversion property 

We complement the inputs to get the complemented 

outputs. 

 

Let’s suppose now that we want to implement a 4 bit 

adder. The blocks in the image below are inverted full 

adders (FA’), that are the previously seen stages without 

the inverter at the output, so we have S_bar and Cout_bar. 
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If we look at the first FA’, at the output I have Co,0_bar, and to get S at the output I add an inverter, 

which can be done because it is not a critical path. Basically I removed the inverters on the critical path 

of the carry. Now the second FA’ receives at the input A1_bar and B1_bar and Co,0_bar. Since it is 

inverting, at the output I have Co,1. 

 

In terms of critical path it is an improvement because each full adder has a single stage and not the 

inverter, but there is also an improvement in terms of transistors (overall 108). 

 

THE MIRROR ADDER 

 

 

The one in the image is the inverting full adder. The PUN is created mirroring the PDN. Now in the 

critical path I have 2 transistors in series in the carry path, and only 3 in the S path (previously it was 3 

and 4). 

 

We can recognize 3 parts, that correspond to D, G and P. In terms of 

carry-in if the B pMOS is on and A nMOS is on we have an inversion 

for Ci. So in the upper part I have the propagate corresponding to 0 and 

in the lower part the propagate of 1 in terms of carry-in.  

 

The red on is the critical part because in an adder what counts is the 

propagation of the carrier. 

 

The sum S (black) is not a critical part. 

 

 

x 
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In which part of the circuit can I use minimum size transistors to spare capacitance? 

The idea is to use a (W/L)n = 1 and (W/L)p = 2. The objective is to reduce the intrinsic capacitance at 

Cout_bar, and what comes into play is the sum circuit, so we can use minimum size circuits in the sum 

part. What about the parts related to kill and generate, in terms of resistance? Do I have to care about 

their sizing? Or I don’t care about the kill and generate delay? Since the critical condition is the 

propagation, I don’t care. In fact, the critical path is from propagate, hence the transistors of kill and 

generate can be very small. 

Instead, in the propagation region I cannot choose minimum size transistors, otherwise I struggle a lot, 

because that note Cout_bar is connected to the Cin of another full adder. 

 

So in node x I have an intrinsic contribution and an extrinsic contribution, in terms of capacitance, due 

to the next FA’. 

 

Hence the green highlighted part is the most critical part of the circuit. Let’s assess the capacitance 

Co_bar, which is the one that must be somehow minimized, since the critical delay is from the input Ci 

to Co_bar. It is the delay to be minimized. 

Let’s step back to the transistors’ sizing. In the non-critical path I can size them with size (1) (minimum 

size). So (1) for the nMOS and (2) for the pMOS, even if the propagation delays of PUN and PDN are 

not equalized, but it is needed to minimize the intrinsic capacitance. We don’t use size (1) for the pMOS 

because it would be a too poor switch, the propagation delay of the PUN would explode. 

 

Also in the carry circuit we have some parts that are non-critical and can have a size of (1) and (2). 
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As for the part in the light blue box, it must be accurately sized. So size 2s for the nMOS and 4s for the 

pMOS of this part. Hence it is a circuit of size s, so it has an equivalent resistance given by Req (1)/s = 

Req(s). 

 

Now we have to assess Cint and Cext. The capacitance in a node is proportional to the sum of the widths 

of the transistors connected to that node. Since all the transistors have minimum length, we can say that 

the capacitance is proportional to the aspect ratios. 

 

Cint assessment 

It is like the intrinsic capacitance of the first stage. Then I have another contribution Cext that I’m trying 

to decouple. Cint is proportional to the sum of the aspect ratios; we have 3 nMOS transistors attached to 

the node, and also 3 pMOS (1 nMOS and 1 pMOS also from the black stage). 

So Cint is proportional to (2s + 1 + 1 + 4s + 2 + 2), considering nMOS and pMOS. 

 

Cext assessment 

We have to think about the next inverting full adder, so we have to consider the green circles of the 

previous image. Overall, the sum of aspect ratios is (2s + 4s + 1 + 1 + 2 + 2). 

 

Propagation delay assessment 

It is the propagation delay of the propagate part of the carry circuit. It is proportional to the equivalent 

resistance of the driving circuit times the sum of the aspect ratios. 

 

This is the propagation delay of the carry. We want to find the size to minimize the delay from the input 

to the output, and the size is infinite theoretically, and the delay cannot be smaller than Req(1)*12. 

However, this is not the best choice to have an infinite size, because of area and power consumption. A 

reasonable choice is to have the second term almost negligible but not actually 0. 

So it is like if the sum 12*s + 12 must be dominated by the first term, so having a s = 3 or 4. 

 

A reasonable choice for the propagate circuit of the mirror adder is s = 3 or 4. 

 

We are not using the Sutherland theory of the minimization of gates because there is no load to drive at 

the end of the chain. 

 

Some considerations 
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Having a maximum of 2 transistors to Vdd or GND is a very good improvement with respect to the FC-

CMOS gate. Moreover, to have the minimum delay from Cin to Cout we have to minimize the 

capacitance, as we have done, selecting also a minimum size for the non-critical transistors. 

Then, transistors connected to Cin are placed close to the output node. This is something that is always 

a good solution, because transistor connected to the slowest signals must be connected closer to the output 

node. 

 

TRANSMISSION GATE FULL-ADDER 

 

Here we have EXOR and AND functions. So why not implementing the single bit FA with transmission 

gates? Maybe we can spare even more transistors. 

Let’s split the single bit FA in a setup part that is responsible for the P and G production at the output, 

and the sum and carry part for the production of Co and S. To be honest, the G signal is not needed, it 

can be avoided and only the signal P is needed. 

 

Propagate is A EXOR B, which means A*B_bar + A_bar*B. 

The critical part is from Ci to Co. The P generation is not the critical part. 

 

Sum and Carry block 

 

We don’t need G because if e.g. we consider the truth tables in the image, we notice that G = 1 iif A = B 

= 1. So G can be substituted by A*P_bar. A = B corresponds to having the kill case if A = 0, the generate 

case if A = 1, so if A = B = 1 we have the generate. 

 

Now in the setup block we can focus only on P production, not on G → simpler 

block. 
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Let’s now suppose to have P and P_bar available. If I have P I can implement S with an inverting mux 

followed by an inverter. We use an inverting mux and an inverter because the inverter is a good solution 

after a TG to avoid a cascade of a lot of transistors. 

NB: P EXOR Cin = P*Cin_bar + P_bar*Cin. 

For P = 1 the lower path is on, for P = 0 the upper part is. If P = 0, S = Cin, while if P = 1, S = Cin_bar. 

 

Let’s now focus on the Co circuit. G can be substituted by A*P_bar. So we can 

implement an inverting multiplexer followed by an inverter. For P = 0 the bottom 

path is on. 

 

As we can see there is no reason to generate A*P_bar, with this trick to express 

Co it is already generated by the multiplexer implementation. So we can spare a 

lot of hardware also. 

 

Now we need to implement the circuit that outputs P and P_bar. Since P = A EXOR B = A*B_bar + 

A_bar*B, I can output P using an inverting multiplexer. 

 

 

This is correct from a logical standpoint but it is not the correct solution. 

 

The problem is that P and P_bar in this implementation have different delays, so there is a period of time 

when P and P_bar are on, since both paths of the multiplexers are on at the same time. 

This leads to a couple of problems: 

- If both paths are on we have a direct connection between Vdd and GND, so cross conduction 

current and power consumption. 

- At the output we can have glitches, which correspond to a logical mistake. 

 

The real solution for the transmission gate full adder is the following. 
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Correct TG-FA 

The advantage of this solution is that it avoids glitches, because the circuit is more symmetric. The TG 

full adder exploits this solution (one of the two parts, the upper XOR or lower XNOR). 

The advantage of this solution is to avoid glitches in the adder. 

So we have this building block above, and in the setup block we need also two inverters for A_bar and 

Ci_bar generation. In this configuration S and Co have the same delay. 

 

Let’s now shift to a n-bit adder, cascading the circuit n times. The critical path is always the propagation 

of the carrier. From Ci to Co we have three stages in cascade, inverter, inverting multiplexer and inverter. 

They seem a lot for a simple one bit FA, but they are very simple stages. 
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CARRY BYPASS (CARRY-SKIP) ADDER 

The most important figure of merit was previously the propagation delay, and the worst path is from Cin 

to Cout, and the worst case condition is the one that corresponds to Ci,0 propagated down to Co,2 (or 

Co,3), so when the carry generated, deleted or propagated by the first FA has to be propagated up to the 

last point and then is needed to compute the sum. 

If we cascade N single bit full adder, the problem is that the propagation delay in the worst case is 

proportional to N. 

 

At architectural level, we want to implement an efficient adder whose delay doesn’t increase linearly with 

N. 

Let’s suppose we need to implement a very large N adder. We put in cascade FAs and the critical path is 

the same as before, if the mux was not present and all the circuits were in propagate. This leads to the 

largest delay. 

 

Then we add a 2-bits multiplexer. Then we use a function called bypass propagate (BP) that, if 1, delivers 

Ci,0 to the output. So we skip the FAs, which are complex circuits and slow, and we bring Ci,0 to the 

output directly. Of course we skip only when needed, that is when all the FAs are in propagate, since 

Ci,0 should propagated from the input to the output. 

 

In this circuit, if we consider it as a standalone circuit, the critical condition is when P0 = 0, so the mux 

is on in the ‘0’ path, but all the other FAs are in propagate, so Co,3 has to wait for Co,0, which is a carry 

that is generated or deleted and then has to be propagated. 

 

Example of 16-bit carry-skip adder 

We are placing in cascade 4 circuits as the one above. 

On the top of each block we have a setup block responsible for creating the P and G signals. Then we 

have the carry circuits in cascade (white squares), so each block computes Co,k = Gk + Pk*Co,k-1, where 

Co,k-1 = Cin,k. 

 

Then we have EXOR gate to produce the sum, since S = Pk EXOR Ci,k. 
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So it takes Tsu for the setup blocks to compute Pi and Gi. Then Tc is the delay of each single of the white 

square blocks. Then we have Ts, to compute S, and Tmux, the one of the multiplexer. 

Let us consider the condition P0:k-1 = 1, meaning that each carry circuit is in propagate. This is one of 

the worst-case condition of the ripple carry adder, not of the carry-skip adder. 

If every circuit is propagating the carry, so every BP is 1, so the carry isn’t arriving at the output through 

the ‘upper path’ but via the shortcuts with the mux. So Cout is a very fast signal in this situation. The 

delay of Cout is in this case 4*Tmux. 

 

So the slowest signal is S15 always. S15 = P15 EXOR Ci,15. 

P15 is a very fast signal, it takes just Tsu, since it comes from the block on top. The problem is that Ci,15 

is not so fast, it comes from Cin, so it takes 3*Tmux + 3*Tc. So S15 takes 3*Tmux + 3*Tc + Ts, which 

is 7*T. 

Under these same conditions, in a ripple carry adder it takes 16*T (15*Tc + Ts), so we have halvened the 

delay.  

 

The real worst case for the carry-skip adder is when the first block has P0 = 0, then we have propagate in 

all the other block and I simply don’t care about the last carry circuit. So P1:14 = 1 and P15 = don’t 

know. 

In this case, the Cin is not propagate at the output since BP1 = 0, then BP2 = BP3 = 1 and BP4 = don’t 

know. Now the carry Ci,1 is generated or deleted but, in any case, it has to be propagated. 

This 12T must be compared with the 16T of the ripple carry adder, so there is an improvement. 

In these conditions, for the propagation delay of Cout we have two possibilities, because S15 is 

independent on the last carry circuit, this is the reason why the last carry block is a ‘don’t care’ condition: 

- P15 = 0: the last small block is G or D the carry. So BP of the last block is 0 and Cout delay is 

Tsu + Tc + Tmux. Tc because the last carry circuit has to produce at the output a 0 or 1. 

This is a very lucky case. 

- P15 = 1: BP = 1 and Cout = Ci,1, so we have Tsu + 4*Tc + 4*Tmux. In any case we are faster 

than S15. 
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Let’s try to formalize this improvement. 

 

Worst case delay 

We have N overall bits with M bits per block, so overall N/M multiplexers. 

The worst case condition is with P0 = 0 and P_1:N-2 = 1, that is when Ci,1 is propagated up to Ci,N and 

then Ci,N-1 is used to generate S_N-1. 

 

The overall delay in the worst case condition is written in the slide. We have to wait M*Tcarry (Tcarry 

= Tc), then we have a term with N/M - 1 because all the multiplexers except for the last one. Then in the 

last carry chain I have to pass in M-1 circuits. 
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Which is the optimum M value? 

I have to take the derivative. 

For Tmux = 0, Mopt tends to 0. Moreover, what counts is the dependance on N. 

 

RIPPLE-CARRY VS CARRY-SKIP 

There is a region where the bypass adder is worse than the ripple carry adder, for small value of N, and 

the reason is the overhead, that is increased by the delay of the multiplexer, and if we have a small amount 

of bits there is no reason in increasing the delay because of the increase in the overhead.  
 

CARRY-SELECT ADDER 

It exploits parallelism. In the image we have a 16 bit adder split in two parts. The idea is to compute in 

advance the carry inside the circuit hypothesizing a 0 or a 1 at the input. So I have replicated the carry 

circuit and supposed a 0 at the input or a 1. I’m computing carries in both x circuits, but the real carry 

can be coming from the upper or lower block depending on the Ci,0. 

Then we have multiplexers whose inputs are chosen depending on the Cin value from the 1-carry or 0-

carry. The first EXOR gate then receives directly Cin, and the last carry is used as select signal for the 

next multiplexer. This leads to a great advantage in terms of time, but we are worsening the area. 

However, this is the only way to improve the delay, computing in advance the carries. 

x 

x 
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Critical path 

We have 4 bits for each block. Let’s suppose we have P = 1 from 0 to 15, so we are propagating all the 

carries from the input to the output. So each carry circuit is propagating the carry. 

The red carries are 0 and the green ones are 1. 

 

If we suppose Cin = 0, we select the red ones that are passed through the multiplexer. We have to way 

for the transit of the carriers, regardless being a 0 or 1, and then we have to pass through the mux. 

The last signal to arrive at the mux is the select signal, not the real signal, because it takes 6T. The last 

signals to arrive at the mux are the blue circled ones, they take Tsu + 4*Tc. So it seems that the select 

signal arrives with a certain delay with respect to the real signal. 

Then also for bits 4-7 the delay is the same for the bits 0-3. Also Co,7 has a delay that is Tsu + 4*Tc + 

2*Tmux = 7T, because I have to wait for Co,3 and then add another Tmux delay. Co,11 has a delay of 

8T (3*Tmux inside). 

 

Is Co,15 the last signal to transition or one of the sum bits? 

Cout has a delay of 9T to transition, because I have to wait for Co,11, which is the select signal of the 

mux, because all the inputs are already available. 
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S_12 = Ci,11 EXOR P_12, so the delay of S_12 is the delay of Co,11 plus the delay of a sum, so 9T. 

similarly, S_13 = Ci,13 EXOR P_13, which is 9T still, as well as for S_14. This because the carry in the 

multiplexer arrive at the same time, and their delay is 8T, that is the one of Co,11, plus Tmux. 

 

Overall we have 10T, because I have to compute the final sum. This is an improved solution with respect 

to the previous adder (12T). 

 

N = 16 and Pi = 1 

If we have all the blocks in P = 1, after a Tsetup we start propagate the carries. After a Tsetup + 4Tc, the 

last carry is available at the multiplexer input. This for each block of 4 bits. 

The worst case path, since the inputs of the multiplexer are available after Tsetup + 4*Tc (small time), 

corresponds to the propagation of the last carry of the first block (blue path). Last bits to transition are 

S13, S14 and S15. 

 

Now we want to assess the worst case delay in the generic case. 
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WORST CASE DELAY 

Let’s consider Tsetup = Tc = Tmux = Tsu = Tsum, N bits and M bits per block, so N/M multiplexers. 

The worst case path is the grey one. We have P = 1 in all the bits. Tsetup is needed for the generation of 

the carry, then Tc for the arrival at the multiplexer, and then we have to pass through the N/M 

multiplexers and in the end through the sum generation circuit (Tsum). 

 

The expression in the image has a derivative in some point, since one term increases and another 

decreases with M. Also in this case, the optimal delay corresponds to have a M proportional to sqrt(N), 

like in the carry-skip adder, the expression is very similar apart from a factor 2. 

 

This is still not the best topology for the adder. 

 

Comparison between adder delays 

If we don’t optimize the linear select adder, the increase with respect to N in the delay is linear. But if we 

optimize it, the linear dependance becomes a square root one. In any case, for large N there is an 

advantage in using the linear adder. The cost is that the area we have to use is much bigger. 
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SIGNED NUMBERS 
 

So far we consider unsigned numbers, so only positive numbers, and now we want to code also negative 

numbers to implement a subtractor. We want to implement negative numbers so that we can use adders 

to implement a subtractor. This way is the 2’s complement form. 

 

2’S COMPLEMENT REPRESENTATION 

 

It adopts a fixed number of bits, which is decided a priori. If we add two words of N bits, we get a word 

of N+1 bits. The idea is to use the MSB as a sign. A_N-1 = 1 means that the number is negative, if it is 

0, the number is positive. Moreover, the MSB has also a negative binary weight. It is not just a sign bit, 

it has a negative weight. 

For instance, if we consider a 3 bit number with the third bit that is the sign. We have the following. 

 

So we can code from +3 (when A2 = 0) to -4, because the MSB is not just a sign bit, but it has a negative 

binary weight. All the remaining bits have a positive weight. 

 

The most important feature of this representation, is that if we consider a positive number nothing is 

changing from what seen so far from unsigned numbers, but we have also negative numbers. 

In order to represent a number, we have to start from the absolute value of the number and, once the 

number of bits is selected, we represent the bit code for that specific number, e.g. if +2 it’s 010 in a 3 bits 

representation. To move to -2, we have to complement all the bits, also considering the sign bit → 101. 

As a second thing we add a +1, so the final result is 110. 

 

In this way we can use an adder to implement a subtractor. 
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Let’s consider now N = 4 and let’s suppose we want to assess +3 – 4 = -1. So we should do +3 + (-4). It 

is 0011 + (0100 (+4) → 1011 → 1100 (-4))  = 1111. 

 

In 2’s complement, once we fix the number N of bits, we can represent the numbers from 2^(N-1) - 1 to  

-2^(N-1). 

 

Since we fixed the number of bits and the result might be N+1 bits, we might have an overflow. E.g. let’s 

try to do 7 + 1 = 0111 + 0001 = 1000 = -8, but it should be 8. It is like if in the table adding a 7 leads to 

an overflow, but this is a mistake. 

Let’s consider another example, for instance -6 – 7 = 1010 + 1001 = 0011 = 3. 

 

SUBTRACTOR 

We are using an N bit adder with B (the negative number) that is complemented bit a bit. Then we have 

to add a 1. The result is made just of N bits, not N+1, the last carryout is discarder, and this can lead to 

an overflow problem. 

 

In the upper left of the image we have the way to represent a subtractor in digital books, adding a 1. 
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If instead of inverters we use XOR gates, we can implement the following powerful circuit. In fact, a 

XOR with B and zero in input gives B in output, so a buffer behaviour, while with B and 1 in input gives 

B_bar in output, so we have an inverter behaviour. So depending on the value of sub/add_bar input we 

have either a buffer or an inverter attached to B. 

 

 

Detecting the overflow 

We simply need to add an EXOR gate which has in input the Cin and Cout of the last FA. If its output 

is 1 we have an overflow, otherwise we don’t have it. 

 

In a subtractor, the cases that leads to an overflow are: 

- We perform a subtraction and A3 != B3 in a 4 bit operation with different signs. 

- We perform the subtraction and R3 != A3, where R3 is the result of A-B. 

These two conditions must be fulfilled at the same time. 
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It is a very complex hardware, we can do the same with a simple EXOR gate between the carries. 

Firstly, A3 != B3 means that at the inputs of FA3 we have to inputs that are equal. Let Cin and Cout be 

the carry-in and carry-out of the last FA. 

By definition of Cout = A3*B3_bar + Cin*(A3 + B3_bar). If A3 != B3, means that A3 and B3_bar have 

the same sign → Cout = A3 + Cin*(A3) = A3*(1 + Cin) = A3, since 1 + Cin = 1 in Boolean algebra. So 

Cout = A3 in the end. 

 

R3 is then the sum bit of the sign FA, so R3 = A3 EXOR B3_bar EXOR Cin = Cin because A3 and 

B3_bar are equal, so their EXOR is 0. So in the end we can EXOR A3 and Cin. 

 

Let’s implement -6 – 7 = -6 + (-7), that in the subtractor is -6 – (+7). 

Let’s verify that is correct at HW level. 

The first FA is in delete, the second one is in propagate, the third is in delete again and the last one is in 

generate, so the OF = 1, and it’s correct. 

 

Let’s try with 6-1 , which should not overflow.  
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MAGNITUDE COMPARATOR FOR SIGNED NUMBERS 

It is a subtractor able to assess if a number is greater or smaller than another number. S is an output that 

goes to 1 if B > A, and B and A are signed numbers. 

The result S should go to 1 if B > A, so in the case there is no overflow detector, the result R3, which is 

the sign bit in case of no overflow, is 1. But if there is overflow, the R3 is 0 and so sign_bar is R3_bar if 

the overflow is present. 

 

So with OF = 0 R3 is the sign, but if OF = 1, we have R3_bar. 

Basically I have to implement a subtractor and an OF detector and the OF result and the sign result are 

put in EXOR in the final gate to get S. 

Let’s add some circuitry to get different conditions as in the table below. 

 

It is a magnitude comparator with a NOR gate. S is a flag that goes to 1 if B > A as seen. Z is a flag that 

is 1 if B = A. If so, A – B = 0, so all the bits in output should be 0. 

Now we can combine Z and S. 
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BINARY MULTIPLICATION 

 

The multiplication involves the AND of one word with all the inputs of the other word. 

 

Example 

 

The first partial product is equal to the multiplicand because the LSB of the multiplier is 1. The same for 

the second partial product, but shifted. Then the third partial product is 0 shifted since the third digit of 

the multiplier is 0. 

In a multiplier we have M partial products, where M is the number of bits of the multiplier, each made 

of N bits, the number of bits of the multiplicand. Then the result is the sum of the partial products. So the 

multiplier is made of M-1 adders of N bits. 

 

In the end we have 3 outliers, the sum bits and the Cout. The result is made of 10 bits. This is the way to 

implement the array multiplier, summing the partial products. 
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4x4 BINARY MULTIPLIER 

The multiplication is just a AND gate. Each term inside the table corresponds to an AND gate, aside 

from the adders. 

As for the second row, aside from the shift, we have 4 terms, and the same for the 3rd and 4th partial 

products. Then we need to sum them, and the result is made of 8 bits. 

 

X is an outlier, so goes directly to the output. Then we need to assess the sum of the two words, and in 

each column we have bits with the same weight. It is the first adder, which is an adder of 4 bits. 

 

The result is of 5 bits. The LSB of the sum goes directly to the output, and we have a carry that is 

propagate to the next column. So the result of the previous adder must be summed with the 3rd row, and 

we have the second adder, which receives in input 5 bits (a carry and 4 digits). Then the result of the 

second adder is fed to the last adder. 

 

We need to implement M-1 adders of N bits. Aside from the first outlier, then we have words that must 

be summed together. We want to use AND gates, since all the terms are AND functions (so we need 16 

ANDs) and 3 adders of 4 bits. The implementation is the following. 

x 
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We have the three adders (the three groups of FA), and we can recognize also the AND gates. Then on 

the left we see also the outlier, X0Y0, which corresponds directly to Z0. The red adder has as first input 

of the half adder X1*Y0 and X0*Y1. Then the carry is propagated to the next FA which receives in input 

X2*Y0 and X1*Y1 plus the previous carry. Then we go on completing the table. 

 

The only ‘outlier’ is the last HA, which must sum X3*Y1 and 0 and the last carry. So there is no reason 

to use a FA with a 0 in input, we can use a HA with X3*Y1 and the last carry in input. 

Then the results of the red adder are Z1, directly at the output, and other 4, which are then fed to the next 

adder in green. 

 

So in the end we need 16 AND gates, 4 HA and 8 FA. 

 

Critical path 

The worst case delay corresponds always to the MSB of the result, so Z7 or Z6. The output of the last 

bottom left FA are the worst case signal, and it corresponds to something that happens in the first HA 

and has to propagate down to the last FA. 

Let’s suppose that Ts > Tc. Typically it’s Z6 the last signal to transition in this case, and we reach this 

critical condition, as said previously, when something happening in the first HA has to propagate down 

to it (blue path). 

 

We have to account for the delay of the AND gates, then for the Tc and Ts for the carry and the sum. 

Every time I move to the left I have to consider a Tc, down a Ts. 

So in the end I have: Tand + 5*Tc + 3*Ts. 

 

There is, however, another critical path, the red one, which is Tand + 5*Tc + 3*Ts. 

Since this array multiplier is done implementing M-1 N bit adders, we can write the generic expression 

(for the array multiplier) in the bottom of the image. 
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Instead, in the case Ts < Tc, the last signal to transition is Z7, but the critical paths are always the same. 

The relationship is the same but we have to swap the Tsum and Tcarry. 

 

This is different from the ripple carry adder, because the carry and sum delay play more or less with the 

same weight, it is not dominating the Tc. So for this adder the TG full adder is a good choice because it 

allows to implement the carry and sum circuit in a lean way, since both delays must be accounted for. 
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SEMICONDUCTOR MEMORIES 
 

Whatever the type of memory, the architecture is typically the same. Aside from the element that stores 

the bit, also the auxiliary circuits are the same and are 3, mandatory for the correct working of the 

memory: 

- Row decoder 

- Column decoder 

- Sense amplifier: needed to speed up the read phase of the bit in case we are using minimum size 

transistors to store a single bit, because they have a very small driving capability. 

The most important figure of merit is not the power consumption or the propagation delay, but the cost 

per bit, so how much area we need to store a single bit. Every effort has to be done in order to decrease 

the area to store a single bit. 

 

OVERVIEW 

 

We cannot use FFs to store a large amount of bits since already a FF employs 20 transistors, and so we 

would need too many transistors. Semiconductor memories are dedicated to store a large amount of data 

using the smallest possible area. 

Foreground memories are the memories done with latches and FF to implement counters and dividers 

seen so far, but we also have background memory, dedicated to store a large amount of data. 

 

Every effort has to be done to improve the integration density, that is the cost per bit. 

Moreover, a volatile memory is a memory that is not able to retain the data if the PS is switched off. Then 

we can distinguish ROM and R/W memory, that can also be written. An example of ROM is the BIOS, 

set of instructions to power on the computer. 

 

Instead, write and read memory are SRAM (used as cache memory) and DRAM, that is a non-volatile 

memory. Then the access can be random access, i.e. we can read each bit in the memory, or non-random 

access memories. Most of the memories are random access. 

 

SEMICONDUCTOR MEMORY CLASSIFICATION 

On the left I have read/write memories, while on the right we have ROM memories. ROM memories 

are non-volatile, since they can only be read. 

The ROM can be mask-programmed (done by the manufacturer) or PROM, programmed by the user 

with fuses. 
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R/W memory can be non-random access, like in the case of the FIFO or LIFO. SRAM and DRAM are 

volatile R/W memories, with random access. Also FLASH and mask-programmed memories are 

random access, so the SRAM should be called SRWM. 

 

Aside from the non-random access memories, all the remaining memories are organized with the same 

architecture. 

 

Memory architecture - Decoders 

We have a memory organized in N words, where a word is made of 8 bits (one byte), and the words are 

like ‘stacked’. In this architecture that is organized in words and columns, every bit corresponding to the 

same column is connected to the same bit line (that is nothing more than a wire). But then we also have 

different rows, and we can see S0, S1 etc… as select signal to select the specific row. 

 

The problem is that we have to handle a large amount of select signals for Mb memories. So we use a 

row decoder, that receives a certain number of bits in input and, with k inputs, outputs 2^k outputs. In 

this way we reduce the amount of select signals. 

 

So for each S0, S1 and so on we have to implement a gate that goes to 1 for a particular code in input. It 

should be a gate whose output is 0 for any other combination than the correct one. So we use 2^20 (1M) 

AND gates with k bits in input. Since the AND is not implementable in FC-CMOS, we could use a NOR 

gate. 
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The other issue is the aspect ratio of the memory, which is that the memory is very tall but not large, so 

we can change the architecture, re-arranging the words so that the aspect ratio is more or less a square. 

Inside the same line we have more words of 8 bits. 

 

In this case we need to add, if we are not considering the sense amplifiers so far, also a column decoder. 

Per row, we have 2^8 words (256). So the column decoder, which is a MUX even if it is called decoder, 

can be implemented with 8 select signals. Now, the row decoder is made with a smaller amount of bits, 

that is 12. In the end I still have to have 2^20 select signals. 

 

Hierarchical memory architecture 

Sometimes we have also a block decoder. In the previous implementation, the bit line is a very long wire, 

as well as for the word line. Typically, a large memory can occupy cm in both directions; a wire that is 

long few cm introduces a large delay, because it is a combination of parasitic distributed resistances and 

capacitances. To avoid the large delay corresponding to a long wire, the memory is split in blocks. 

 

Each block as a row and column address, but also a block address as a select signal. So we split the overall 

addressing in 3 parts, and this has the advantage of saving power consumption and delay. 
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ROM CELLS 

We store a bit with just one single transistor. If we consider a bit line connecting all the bits, we can add 

an nMOS connected to ground. It is a pull down device that pulls the line to ground. It can be considered 

always on. 

The WL (word lines) are activation signals, BL is the bit line. We are focusing on BL0, in common to all 

the cells belonging to the first column, and it is kept to GND by a minimum size transistor (aspect ratio 

of 1). 

 

The grey corresponds to a cell where we store a single bit. Let’s suppose that the first nMOS is turned on, 

and it has a large (W/L). Of course, WL1 is 0 because we can read one word at a time. The BL0 is pulled 

up because the nMOS has a large size, so it is raised to a logical 1. 

 

If we want to read the second location, we pull up WL1 and set WL0. There is no transistor in WL1, nor 

an intersection with BL0. So BL0 after a transient is 0, so since there is no transistor in the cell, the BL0 

remains 0. So to create a ROM we implement or not a PU device. 

 

To work properly, only one WL can be pulled up at a time, so we can only read one world at a time. 

 

We have some issues. Firstly, the PDN nMOS is not minimum size (10) and dynamic, so not always on, 

while the ones in the cells are small, minimum size. So in theory the PU is not effective, but it happens 

since the PD nMOS is dynamic.  

Before reading the memory, all the WLs are 0, and the BL has an overall capacitance of Cbl = 1pF that 

is discharged since the PD nMOS is on. Then the PD nMOS is switched off and the capacitance Cbl 

remains floating, keeping 0V across its terminals. Then we want to read the WL1, so we pull up the WL 

and we read 0 since the Cbl is not changing. If instead we read WL0, of course it takes a lot of time since 

the transistor is minimum size, but after a while the output is Vdd – Vt. 

 

This is typically an architecture that is differential, so every cell has another cell that is storing the 

complementary bit. We have always this differential architecture, so to store a bit we always need 2 cells. 

So when WL0 = 1, we have that Cbl is pulled up slowly, but we will also have the counter-cell that will 

be without the transistor implemented, so its capacitance will remain 0. If we plot BL0 and BL0_bar, 

they both start from 0, and one increases while the other remains 0. 

The voltage difference between the two is sent to an amplifier that is turned on and the output is quickly 

regenerated. 

 

In fact, if we wait for the nMOS to pull up BL0, it would require too much time, and I can shorten the 

time using a sense amplifier and a differential signal. This also explains how we can use minimum size 

transistors inside the memory. 
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This is known as OR ROM, since it resembles an OR gate. The PD device nMOS is connected to a signal 

that is Vdd before the reading phase, and 0 during the reading phase. It is typically not used, despite the 

same area taken with respect to the NOR ROM, because of high propagation delay, i.e. access time (read 

time), because nMOS transistor is not so prone to pull up a node. 

 

On the right we have instead the NOR ROM, that is the one typically used. Now we have a PU device 

connected to Vdd, and the signal is 0 and released to Vdd during the reading phase. Cbl, before the 

reading phase starts, it’s charged to Vdd. Then inside the cell we can have nothing or a transistor device 

to ground, so it’s the opposite than before. 

 

If we want to read WL0, we pull it up and we read a 1, while if we read WL1 the nMOS is activated and 

we read a 0. Also in this case the architecture is not single-ended, we have the complementary 

counterpart.  

This gate resembles a NOR gate because if one input goes to 1 the output is discharged to ground. 

 

MOS NOR ROM 

On the top we have the PU devices, connected to GND (in reality to a signal phi that is 0 before the read 

phase and Vdd during the read phase, so it’s a dynamic PU). We have 4 word lines and 4 bit lines in this 

example. 

 

Before the reading phase, all the BL capacitances are charged to Vdd. Then let’s suppose we want to read 

the bit corresponding to WL0. All the other WL are at 0. In the first location we read a 1 because there 

is no transistor, in the second cell we have a nMOS so from BL1 we read 0 and so on, reading 1011. 
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Remark 

If we look at the ground connection, it is brought via the purple wires, and it is in common between two 

rows, so rows are folded to share the same ground. So bit lines are implemented with metal1 wires, word 

lines are implemented in polysilicon and ground wire is implemented through diffusion. This is to spare 

area. 

 

Layout 

 

 

MOS NAND ROM 

In the NOR ROM, only one WL is on at a time, and the transistors are ‘connected in parallel’ for each 

BL, since they share the same drain, and the sources are connected to ground. The difference is that the 

gate terminals are different. 

 

In the NAND ROM, transistors are connected in series. The pMOS are connected to a signal phi that is 

normally 0, and Vdd during the reading phase. 

As for the architecture, in this case, the bottom of the BLs are connected to ground, and the transistors 

implemented in the cells are in series. To work properly, all the WL has to be 1, and the one we want to 

read must be 0. 

 

Let’s focus on the 00 cell. The transistor in WL1 on BL0 is on, since connected to Vdd. So BL0 is 0, since 

the BL capacitance is discharged to ground. Then to read WL1, it has to be 0 and so the nMOS is off, 

but all the other WL are 1. So BL0 remains at 1, since it has been charged between the reading phase 

begins. So the absence of a transistor means a 0, the presence a 1 in this architecture. 
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If we look at a single column, it resembles a NAND gate with transistors in series, this is the reason for 

the name. 

 

The main difference with respect to the NOR architecture is in the fact that there is no ground wire signal, 

so in this case we have smaller area per bit. 

 

Layout 

 

So the area is improved in this architecture, but another figure of merit is worsened, and it’s the delay. In 

fact, for the same Cbl in the NAND ROM architecture we have minimum size transistors in series, which 

means a large resistance to pull down the capacitance. 

 

EQUIVALENT TRANSIENT MODEL FOR MOS NOR ROM 

A memory architecture is organized in WLs and BLs. I give a signal on the WL and I want to read the 

content of a BL. There are two times to consider, the propagation delay of the WL signal and the time it 

takes for the BL to be discharged, in the case of the NOR ROM. 

 

This is why in the model we have highlighted the WL as a combination of RC cells (r_word, c_word, the 

specific resistance and capacitance, and the capacitances are due to gates and polysilicon). 

Then we reach the farthest transistor on the right side which is minimum size (R = 13 kOhm) and has to 

discharge the Cbl. The BL is metal wire and very conductive and can be considered as just a capacitance, 

since the resistance is not dominant (metal). 

 

This Cbl is made of two contributions: the metal capacitance and the drains capacitances. So the access 

time of this type of memory is divided in two contributions. 
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EQUIVALENT TRANSIENT MODEL FOR MOS NAND ROM 

 

Now the WL is pulled down when we want to read and the signal travels from left to right, and the worst 

case is when the signal has to reach the BL on the right side and we have to pull down the Cbl through 

all transistors, so N-1 transistors on in series, where N is the number of WLs. 

The combination of transistors is represented in the model with a wire resistance and capacitance. 

 

PRE-CHARGED MOS NOR ROM 

 

In the NOR or NAND architecture, the PU device (or PD) doesn’t work as static device, always on, but 

switched off when the reading phase starts, and we have just capacitances charged to Vdd or GND. 
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NOR AND NAND ROM 

This memory is programmed by the foundry. Let’s suppose that, instead of the presence or absence of 

the transistor, we have a transistor in every cell in the NOR case. And let’s suppose that the transistor 

can be adapted, so we can dynamically change its threshold voltage so that it’s always on or off. This is 

the basic idea behind the FLASH memory. The same thing can be done for the NAND ROM. This 

transistor is called floating gate transistor (FAMOS). 

 

FAMOS 

In the oxide between the control gate and the substrate we insert a floating gate of PolySi, which behaves 

as a tank for charges, it’s able to store or remove electrons. In this way we can change the threshold. 

 

Let’s consider the floating gate full of e-. If we increase the gate voltage, the e- act as a barrier, so it is 

more difficult to invert the channel and create an inversion channel, so the Vt is increasing. So we cannot 

drive the floating gate but we can create e- inside it to increase the threshold voltage with respect to 

the nominal value, or remove them. 

When we remove electrons we are doing an erasing, while if we are adding them a programming. 

 

The one on the left is the classical characteristic, while the one 

on the right is the one with the increase in threshold. We can 

move from one characteristic to the other acting on the floating 

gate e- content. So they can either act as an open circuit or a 

normal transistor depending on the threshold voltage. 

 

This is a way to implement FLASH memory. 
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FAMOS programming and erasing 

On the left we have a high Vt, on the right a nominal or low Vt, since erased, and it behaves as a normal 

transistor. 

The programming phase is made with avalanche injection. We apply a very high voltage to the control 

gate pin (12V, so the technology must withstand it) and this means a layer of electrons in the substrate, 

since we are inverting the channel (in the nMOS case). But we apply also a high voltage at the drain side, 

with the source to ground. We will have a high electric field that accelerates e- which become hot 

electrons with high energy and are able to jump across the oxide and reach the floating gate, where they 

remain trapped. 

 

To erase the cell we apply 0V to the control gate, like if we are switching off the transistor, and a high 

voltage at the drain side. In this case there are no free e- in the channel, and due to the high electric field 

we remove electrons from the floating gate, since they are attracted by the drain → Fowler Nordheim 

Tunneling. 

 

So to program a memory firstly we erase all the cells, and then we program the cells we want to program, 

but this is a multi-phase procedure. We apply the 12V, we check the threshold and if the threshold is not 

the one needed the operation has to be repeated up to the desired value. So the write of a flash memory 

take some time, hundreds of us. So the problem is the time taken for the write phase to write the memory. 

 

This is a very non-volatile memory in the sense that the e- remain trapped in the layer once created, even 

if we switch off the power supply. It is a R/W memory non-volatile. It is not used everywhere but only 

in substitution of the hard disk drives because it is slow, the write phase is slow (hundreds of us). 

There is also another problem, and it’s the power consumption. Indeed, we have to apply a lot of V to 

write it, and also we have a large current in the transistor. 

Then, as a last issue, because we can write and erase the memory only for some times, like 1 mln times. 

At a certain point, the oxide is damaged and the e- that are trapped are immediately released, so we are 

not writing correctly the memory → leakage, retention of data. SRAM and DRAM don’t have this last 

problem. 
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SRAM 

 

Difference between SRAM and DRAM 

Both SRAM and DRAM are volatile, in the sense that the memory looses the stored data if we switch 

off the power supply. The SRAM is based on a bistable element (static latch) and a couple of transistors 

to implement switches, so we have 6 transistors per cell. Moreover, the SRAM is differential and fast 

with respect to the DRAM, in terms of access time. 

 

On the other side, the DRAM requires a periodic refresh, and it is based on a transistor and a capacitor 

(3 transistors per cell is a very old architecture). The storage capacitance is a physical capacitance 

implemented in the cell. Between two consecutive reads we need to refresh the content of the cell. 

Moreover, intrinsically it’s single-ended, but it is nevertheless implemented in a differential architecture 

composing cells in a certain way. 

Once we read the DRAM cell, the voltage swing is not so big, so we have to distinguish a 0 and a 1 

between two values that are not so far in terms of voltages. Because of this the differential architecture is 

needed so that we can in a way remove a sort of digital noise. 

SRAM ARCHITECTURE 

We still have a WL and BL organization. Vertically we have BLs, horizontally WLs, but we also have a 

differential structure, so BL0 and BL0_bar, for each bitline we have the complementary one. In the image, 

on the left we have BL_bar, on the right BL. Each bistable element and two switches represent the 

memory cell. Each cell is made of a bistable element and two nMOS that behave as pass-transistors that 

have to isolate the bistable element or connect it to the BL to write or read the cell. 

 

We need also some auxiliary transistors. On the top we have two pMOS that behave as precharge devices. 

It means that, before the read phase begins, all the WL are 0, so the cells are disconnected from the BLs 

and the BL and BL_bar are pulled up since the pMOS are on. BL and BL_bar lines behave as capacitors 
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(fF) and they are pre-charged. Then during the read phase we turn on one of the WL and we create a 

differential signal across the two BLs, BL and BL_bar. So the PU devices are mandatory for the correct 

working (read) of the circuit. 

 

On the bottom we have also other devices used to write the cells belonging to the column. To write a cell, 

we need to PU the corresponding WL and then we force the BL at low impedance, one to Vdd and the 

other to GND. 

 

6-transistor CMOS SRAM single cell 

In the middle we have the bistable element. Then M5 and M6 are the pass transistors, driven by the WL 

signals (red line), while the blue lines are BL. The WL is implemented typically in PolySi and it has to 

connect all the gates, while the BL is typically implemented in metal1 and all the BLs run in parallel. 

Q is the true value, Q_bar is the complement value. Let’s suppose that Q = 1, so the cell has been written 

with a 1. So on the right side the pMOS is on and the nMOS is off, and the opposite in the left inverter. 

 

This situation is depicted in the following image, where transistors are deleted to simplify the scheme. 

 

READ PHASE 

Only one WL is on at a time, so we read all the cells belonging to the same row, since the WL signal is 

in common. Three operations are performed: 

1. Precharge: WL = 0V, while PC (precharge) is connected to 0 and we precharge BL and BL_bar. 

They are metal wires, so the resistance is negligible but the capacitance is not. The capacitance is 

the metal1 capacitance plus all the contributions of the transistors (drain contributions) connected 

to the BL. The PC capacitances are charged at Vdd on BL and BL_bar. 

2. Activation of WL: WL goes to 

1, that is Vdd, that is 2.5V, so 

the pass transistors are turned 

on. Once we pull up the WL, 

the situation is the one in the 

image aside, at t = 0. At the 

gate of M5 we have Vdd, so 

there is an implausibility if we 

have 0V at node x. I have two 

nMOS in series connected to 

ground, it is like the following. 

 

 

x 
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So we have a current from Vdd to ground. So the voltage in the intermediate node cannot be 0, but it 

rises to a value delta(V) which depends on the relative size of the two transistors. 

 

Returning to the SRAM, BL_bar voltage that was at Vdd drops. At the beginning it drops linearly since 

we have a capacitance and a constant current in the two transistors. 

If we focus on the right side, we have the following situation. The pMOS is on and also the nMOS. But 

there cannot be current because we are between Vdd and Vdd.  

Of course the situation is the opposite one if we consider a cell written with a 0. So BL_bar is discharged, 

BL remains the same. Let’s plot on a graph V_BL and V_BL_bar. 

If we wait for a time long enough, the final value reached by V_BL_bar is 0V, because we discharge the 

capacitance and then we are between 0V and 0V with the two transistors. However, we don’t reach 0V 

because after few ns after the linear trend, after a time fixed a priori, we activate the sense amplifier. 

 

3. Sense amplifier enable: its activation must be fixed a priori to speed up the read phase. 

 

Read upset 

There is however an issue, the read upset. 

We said that the x point goes to delta(V), which is a value function of the aspect ratio of the transistors. 

If M1 is very large and M5 is very small, delta(V) is close to ground, because M1 is a smaller resistance 

than M5. If delta(V) is very large, we see that node x (Q_bar) is the input of the other inverter of the stable 

element. If delta(V) is greater than the threshold voltage of the inverter, the output of the inverter toggles 

to 0V in output, and if so also the inverter on the left side has 0V in input and it toggles to Vdd in output. 

So node Q_bar reaches Vdd → during the read phase we have written the cell and stored a 0 in the cell. 

 

To avoid read upset, we need to be sure that delta(V) is not too large. This means that we have to respect 

the following condition: delta(V) < Vm. 

Typically, digital designers require a more stringent condition: 

delta(V) < Vtn = 0.43V. This more stringent requirement means that 

M3, which is off, is not turned on. 

 

We have to size accurately M5 and M1 hence. 

 

Let’s write the currents in the two transistors at the beginning when 

we activate the WL. M1 is in ohmic, while M5 is in velocity saturation. 
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The two transistors are in series so they have the same current. We can rewrite the situation as follows, 

with the following assumptions: 

- No channel length modulation. 

- No body effect. 

These are reasonable since the source voltage of M5 is smaller than Vtn, so close to ground. 

Since delta(V) is small, the term delta(V)/2 can be neglected, and in the end we have a delta(V) that 

depends on the relative sizes between the two transistors. The ratio of the aspect ratio is known as cell 

ratio, (W/L)_1/(W/L)_5. 

 

We solve for the cell ratio CR and we get CR > 1.2. 
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Simulation results 

 

WRITE PHASE 

Let’s suppose to have a bistable element written with a 1. To change the content, we need to connect the 

right side to 0 and the left side to 1, as in the image above. 

On the left side we have M5 and M1 between Vdd and GND, so there is a current, but since M1 is larger 

than M5 to avoid read upset, the write phase is not effective on the left side. As for the right side, we have 

a current since Vdd and GND between M4 and M6, so the voltage V_Q drops from Vdd down. We can 

rewrite the situation as follows. Which is the voltage V_Q that enables the cell to toggle? 

V_Q is the input of the inverter on the left side, so it has to be smaller than Vm, switching threshold of 

the inverter. However, for safety reasons we have a more stringent condition: V_Q < Vtn, a condition 

that allows to turn off M1. 

 

Let’s write the expressions for the current. First of all, we assum6 V_Q close to ground, so M4 is in 

velocity saturation, M6 is in ohmic. Again, we neglect the channel modulation effect. V_Q/2 can be 

neglected because it is very small with respect to Vdd. 
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(W/L)_4/(W/L)_6 is called pull-up ratio (PR). The result is that PR < 2, so the pMOS has to be very 

resistive with respect to the nMOS. The following is the result of the simulations. 

Overall reasonable sizing 

CR > 1.2 and PR < 2 (for 0.25 um CMOS from INTEL). So if M5 (1), M1 must be at least (1.2). Then 

we can size M2 with (1) because of the PR. Of course, the smaller the aspect ratio, the better, because we 

reduce the area occupation. 

 

Once we have the sizes of all the transistors, if we consider the read phase it is just a matter of fixing the 

activation time of the sense amplifier. Let’s suppose Cbl and Cbl_bar are known, the two capacitances of 

BL and BL_bar. The activation time must be set to be sure that between V_BL and V_BL_bar there is a 

reasonable difference, e.g. 100 mV. To set the activation time we can use the following formula. 

 

Delta(T) is the time after the activation of the WL where we have to activate the sense amplifier. 

 

4-TRANSISTORS SRAM 

Again we have the bistable element and the pass transistors, but the inverter is implemented with a 

resistive load. 

The benefit is that in this case we avoid two transistors that are substituted with two resistors. This allows 

to greatly reduce the area of the cell. 

 

The resistance must be within minimum and maximum allowed values. Let’s consider the cell is storing 

a 1. On the left side we have static power consumption because Q_bar is close to ground if R >> r_on of 

M2 on the left, so we have a current Vdd/R, and we have a static power consumption Vdd^2/R. 

 

Let’s suppose we want to have a power consumption smaller than 1mW. In this way we get the Rmin. 
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As for the maximum value of the resistance, we cannot just put an open circuit because if we switch off 

the transistor M2 on the right we have a leakage current which also flows in the resistance, and this might 

generate a huge voltage drop if the resistance is very large. 

 

 

DRAM 

 

1-TRANSISTOR DRAM CELL 

 

Write phase 

WL is pulled up and BL is pulled to GND or Vdd depending on the value we want to store. If we force 

BL to 0V, the capacitance is discharged. If we want to write a 1, the nMOS is on as for storing a 0 and 

the Cs is charged to Vdd – Vtn*. From now on let’s neglect the body effect. 

 

Read phase 

We have the following steps: 

1. Precharge of the bitline to Vdd/2. 

2. WL = 1 and we put in contact the Cbl (1pF) and the storage capacitance Cs. So the switch 

(nMOS) is closed. Since we are connecting two capacitances, we have charge sharing. In the 

expression of the image above, Vpre = Vdd/2. 

Let’s call Vx the voltage across Cs. It can be either 0V or Vdd – Vt depending on the stored value. 

 



242 
 

Charge sharing works as follow. Before the charge sharing occurs, on the left we have a charge 

Cbl*Vdd/2, on the right Cs*Vx. Then we have the switch closed and the voltage is shared and 

the same. Now the charge is Vbl*(Cbl + Cx) and it must be equal to the charge on the two 

capacitances before the activation of the WL. Our unknown is Vbl. 

 

Instead of Vbl, let’s write the voltage difference delta(V) = Vbl – Vdd/2. If there is a 0 stored in 

the cell I expect this voltage to decrease. 

So with respect to the precharge value the voltage difference we can sense is very limited, from -30mV to 

+25mV. Aside from this, which makes the use of the sense amplifier mandatory, there is another problem. 

 

In Cs we store either a 0 or a 1, and during the read phase the voltage across it is no more Vdd – Vt or 0, 

but close to Vdd/2. This means that we have destroyed the content of the cell, so we need to refresh the 

content of the cell, since the read phase as it is is destructive → every time we read the memory we have 

to rewrite its content, so we need a particular kind of sense amplifier that is able to do so. 

 

Sense amplifier operation 

 

We need to precharge at Vdd/2 = Vpre, and then we have a very small swing, a delta of 56mV. However, 

at a certain time stamp we turn on the sense amplifier (which is a static latch for the DRAM) which 

refreshes the content of the cell and brings V_BL to Vdd – Vt or GND. So it has a double role with respect 

to the sense amplifier of the SRAM. 
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SOME OBSERVATIONS 

 

In the SRAM is not required to have a sense amplifier for each bit line. In the DRAM the sense amplifiers 

are one per column (one per BL) because the ‘destructive read’ applies to all the cells connected to the 

same BL, regardless having the WL to 1 or not. Because of this, DRAMs are also circuits which are very 

power hungry. 

 

Moreover, DRAM is inherently single ended, but no DRAM cell is implemented single-ended, they are 

always differential. The reason we cannot use an opamp to read a DRAM is because the opamp is not 

able to refresh the content of the cells, it reads them and stop. 

 

1-transistor DRAM cell layout 

 

The silicon dioxide (light green) below the PolySi is small for the capacitance implementation because 

we want to decrease the area of the capacitance and have a big capacitance value. 

 

Advanced 1T DRAM cells 

Instead of implementing a capacitor like before, which requires a lot of area, we exploit the vertical 

dimension. We create a hole in the silicon substrate and we dill it with two layers of PolySi, so we create 

a capacitor just digging a hole in silicon. This is the trench cell. 

 

Another alternative is creating the capacitor above the silicon surface using stacks. Both are beneficial in 

terms of integration density. 
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COMPARISON 

 

In DRAM, since the switch is implemented with a transistor, and we store a logical 1, we have a leakage 

current that slowly destroys the content of the memory. So DRAM requires also a refresh, once in a while 

we need to read all the cells and refresh their content, otherwise the content is lost. The leakage current 

is the one of the junction diode or the subthreshold current. 

 

The refresh is not required in SRAM memory. Due to the refresh lack, the data access is faster in the 

SRAM, typically in the order of 10ns, while in DRAM it’s 50-100ns. 

Moreover, SRAM can waste more power because it can reach higher speeds, but at the same speed the 

DRAM is more power hungry because we need to refresh the whole array. 

 

PERIPHERY 

- Row/column decoders 

- Sense amplifiers 

- I/O buffers 

- Control/timing circuits 

 

In case of DRAM is mandatory to have the sense amplifier between the column decoder and the cells, 

and we must have one per each bit line, it’s mandatory. In case of SRAM there is no reason to have a 

sense amplifier per each BL, but only for each bit of the word we want to read, regardless the amount of 

words we have in each WL. This is also a reason why the DRAM is more power hungry. 
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ROW DECODER 

 

It has N bits in input and outputs 2^N bits. Let’s start from the row decoder for the NOR ROM and 

SRAM. We need a circuit with N bits in input and 2^N outputs, and the outputs are so that only one 

output is a logical 1 at a time, all the remaining are 0. In these two architectures, only one WL is on at a 

time.  

 

Let’s consider the case of N = 10. Each AND gate is fed by 10 bits (NOR = AND). So we have all 

complement inputs at the input of the AND. Only when all the inputs are 0 the WL0 goes to 1. For N = 

10 we have 1024 = 2^10 WLs. 

The last AND gate will correspond to all the inputs ‘true’: WL1023 = A0*A1*A2*…*A9. 

Of course, in FC-CMOS logic the AND is difficult to be implemented, so we can substitute the AND 

with the NOR, which has almost the same behaviour of the AND. So we apply the De Morgran theorem 

putting a double bar on the AND functions and we can implement the row decoder using NOR gates. 

 

NAND ROM 

In this architecture transistors are in series, so it requires all the WL = 1 except for the one we want to 

read. So the AND decoder can be substituted with a OR decoder, that translates to NAND in FC-CMOS 

logic implementation. 

In this case (OR decoder), WL0 = A0 + A1 + … + A9. WL1023 = A0_bar + A1_bar + … + A9_bar. 

Translating into a NAND decoder we have WL1023 = (A0*A1*…*A9)_bar 

 

However, we have some issues. In a NAND decoder, the main issue is that we have a gate with a lot of 

transistors in series, so the delay increases quadratically with the number of transistors. And this is a 

problem because the access time to the memory, once the address to row and column are given, is made 

of 3 main contributions: row decoder propagation delay (some time for the WL to be pulled up), cell 

access delay, delay of the sense amplifier activation (negligible) and delay of the column decoder. 

 

In this case, per each WL we have to implement a NOR or NAND gate with a lot of transistors, and the 

delay increases. 

 

NAND decoder – hierarchical decoders 

The idea is to split the decoder in two parts: a pre-decoder and a real decoder. Let’s consider a case with 

8 bits. 

We know that WL0 = (A0*A1*…*A7)_bar, and to reduce the complexity of this NAND gate we can 

split it using the associative property of the NAND function, coupling A0*A1, A2*A3, A4*A5 and 

A6*A7. Then for each of these terms let’s apply the De Morgan theorem, applying a couple of bars per 

each couple. 
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The inner terms are NOR gates, whose implementation is the one encircled. 

 

So the initial NAND gate with a fan-in of 8 has now a fan-in of 4. The grey box is called pre-decoder 

because it can be used also by other NAND gates that need the same output as inputs. 

 

So we reduce the complexity of the decoders, we are using gates with smaller fan-in, and we are also 

reducing the number of transistors because the pre-decoder can be shared among different gates. 

 

Area sparing 

Let’s consider a NAND decoder. In classical FC-CMOS we would need 2^8 = 256 NAND gates with a 

fan-in of 8, so made with 16 transistors. So we would require 256*16 = 4096 transistors. 

If we use a hierarchical decoder, in any case we have 256 NAND gates but with a smaller fan-in, so made 

of 8 transistors. Moreover, we have 4*4 NOR gates, each made with 4 transistors, so overall 64 transistors 

for the pre-decoder. In the end we have 256*8 + 64 = 2116 transistors, so we have spared almost 50% of 

the transistors. 

 

Hence there is a huge improvement in terms both of area and delay, because of the smaller fan-in. 

 

In the other implementation, that is the NOR decoder, we have NOR gates and NAND pre-decoders. 

 

DYNAMIC DECODERS 

To further spare transistors, at transistors level instead of implementing FC-CMOS gate we can 

implement pseudo-nMOS decoder with a PU device with a pMOS and PDNs. It’s an improvement in 

terms of transistors, we are removing the cumbersome PUN using only pMOS which are dynamic 

transistors. 

 

A gate like this is not properly a pseudo-nMOS gate, because the pMOS should be always with the gate 

connected to GND and very weak in a real pseudo-nMOS. In reality the pMOS is connected to a signal 

that is 0 at the beginning, so we precharge the node as in SRAM memories, and then we go to 1 to turn 

the pMOS off and leave a floating capacitance charged to Vdd. If at least on nMOS is to 1, the capacitance 

is discharged. 
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COLUMN DECODER 

 

It is not properly a decoder, but a multiplexer. 

 

4-INPUT PASS-TRANSISTOR COLUMN DECODER 

Let’s suppose we have 4 bits (4 BLs) and we want to output only 1 bit (D). We have to implement a 

multiplexer, so we need 2 select signals. 

To implement this multiplexer we can use e.g. a NOR decoder. So the multiplexer is made only of 4 

transistors, and only one at a time is turned on for a particular combination of the select signal bits A0 

and A1. So only one of the 4 select signals S0, S1 etc. is to 1 depending on the input bits. 

 

 

Basically we are implemented a NOR decoder. This implementation requires a lot of transistors, because 

we have 4 NOR gates and 4 pass transistors (PT), so overall we have 4*4 + 4 transistors, so overall 20 

transistors. 

 

The advantage is that the speed at which it can operate is higher. In fact, in the worst case path at the 

beginning at t = 0 we have two addresses given at the input to the 

memory. Then the row decoder processes the input data and pulls up a 

word line. Then once the WL is selected, all the cells connected to the 

WL write their content on the BL, and then the signal travels along the 

BL, arrives at the column decoder to reach the output node. The worst 

case path is the one highlighted in green. So we have the propagation 

delay of the row decoder, the delay of the cell (that is the time required 

to discharge the bit lines), and the delay of the column decoder. 
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4-to-1 TREE BASED COLUMN DECODER 

We can implement the column decoder with a tree multiplexer. The codes of the column decoder are 

directly fed to the transistors, and only one path is on at a time. 

 

In this implementation we have only 6 transistors, and this is a huge difference in terms of area. 

 

In this implementation we have two transistors in series  (8 if we consider 8 inputs), and the number of 

transistors in series is equal to the number of inputs. In the previous implementation we have only 1 

transistor in the series, and this is beneficial. 

 

So in this second implementation we have less transistors but problems in terms of propagation delay. 

 

 

SENSE AMPLIFIER 

 

Whatever the memory we implement, e.g. in case of SRAM we have a bistable element and a couple of 

PT, the signal swing at the BL node is very limited. This because of the big capacitance Cbl and minimum 

size transistors, so large equivalent resistance and small current available. 

The sense amplifier is enabled after a fixed amount of time and the difference is amplified. 

 

We need to assess the delay tp with which the sense amplifier comes into action. 

 

Delta(V) should be 2.5V, but if we are not willing to wait, we can set a smaller delta(V) e.g. 50mV and 

we activate the sense amplifier.  
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So to cope with a small propagation delay we need to reduce as much as possible the voltage difference 

between the two BL and BL_bar lines. 

 

So instead of waiting for the signals BL and BL_bar to reach the full swing, we amplify them after a while 

to reach the full swing, so we need a sense amplifier. 

 

DIFFERENTIAL SENSE AMPLIFIER FOR SRAMs 

We have a differential stage followed by a single ended amplifier, that is an inverter. The differential 

amplifiers takes the signals BL and BL_bar and amplifies the difference. To be honest, M5 is not a current 

generator but a switch, driven by the signal SE (sense-amplifier enable). 

 

M5 is 0 before the read phase starts, and then logical 1 when we want to amplify the voltage difference 

between the two lines. So it is a switch, and not a current generator, because we don’t want to increase 

the CMRR, but we just want to amplify the voltage difference and output a full swing signal. We are not 

interested in implementing a good analog amplifier. 

 

We just need something to amplify the difference and something other to have a full-swing signal at the 

output. 

Why do we need to activate the sense amplifier at around 50mV or 100mV and not before? Because we 

have to cope with noise, which could be so large that the output is random due to noise. 

We have also other non-idealities in a differential amplifier, like the offset; every real circuit has an offset 

because of mismatches between transistors. So the input is imbalanced and we need to win it to amplify 

the correct signal. Bit and bit_bar in a SRAM configuration are precharged high. 

If we precharge the inputs to Vdd/2, once we connect the storage element to the bitline capacitance Cbl, 

the voltage on the inputs slightly increases or decreases with respect to Vdd/2. 

 

For these reasons we have to wait that the difference between BL and BL_bar is large enough. The good 

thing is that this analysis can be done a priori during the simulation phase of the circuit, and so we can 

know a priori the activation time of the sense amplifier. 

 

Why not designing an amplifier with the pMOS input pair? It is not a matter of driving capabilities of the 

transistor, but the fact that both inputs are close to Vdd, and so the pMOS are off when the signal is high. 

Since the SRAM works with a precharge to Vdd, we need to use a sense amplifier made of nMOS 

transistors. 

 

Differential sensing 

We have the whole circuitry connected to BL and BL_bar. We have the sense amplifier, the cell and at 

the top the precharge circuitry, driven by an active-low signal. We recognize 2 pMOS attached to 

precharge signal (PC) which, when 1, turns on the pMOS and BL and BL_bar are pre-charged to Vdd. 
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Then we have also other auxiliary transistors, the EQ, called equalization transistor. It is like connecting 

the two BLs by means of a resistance, to equalize the voltage between the two BLs. In fact, during the 

charge phase, it may happen that BL is already at Vdd, and BL_bar is charging to Vdd, because during a 

readout one of the two BL or BL_bar can reach 0. 

BL_bar charges exponentially and reaches Vdd at an infinite time, so we don’t reach exactly Vdd. Since 

we are coping with a small difference between BL and BL_bar and BL_bar might not be Vdd exactly, it’s 

important to have the transistor in the middle to equalize the two voltages. 

Furthermore, there are two pMOS transistors always attached to GND. As a remark, the pMOS 

connected to the PC signal are large transistors, not minimum size, because we need a fast PU. The 

pMOS connected always to GND are minimum size instead, so they are not responsible for the PU. 

However, we need them and always on because during the read phase one of the two BL remains at Vdd, 

the other one has to decrease toward 0. If the large pMOS are off, the two capacitances are floating. So 

the capacitance is subjected to a leakage current, and it can be aggressed by an aggressor (noise). 

 

Because of this we implement the small pMOS transistors, also called bleeders. They serve the purpose 

of reducing the impedance of the wires (10 kOhm resistance), they are a weak connection to Vdd. In this 

way the capacitance is immune to noise and the leakage issue is no longer an issue because there is a 

connection to Vdd. 

 

SENSE AMPLIFIER FOR DRAM – LATCH BASED SENSE AMPLIFIER 

If we forget for a moment the EQ transistor we can recognize a differential structure with BL and BL_bar, 

so we have created a differential architecture with two bit lines. In the middle we have a sense amplifier 

made of a latch, a bistable element. So the sense amplifier for DRAM is a bistable element plus a couple 
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of transistors on top or bottom to enable it and enable the amplification, driven by two complementary 

signals, so that we can activate both of them for SE = 1. If SE = 0, the bistable element is not active and 

not amplifying, because we are not powering it and it’s floating. 

 

How can a bistable element operate as an amplifier? 

A bistable element has 3 stable points, out of which one is metastable, corresponding to Vq = Vdd/2 and 

Vq_bar = Vdd/2 considering inverters with Vm = Vdd/2 ((3.5) – (1) inverter). However, thermal noise 

is enough to move away from this bias point. 

Once the inverter is biased at Vm, the inverter is not a digital element, but it works as a an amplifier, it’s 

the combination of two common sources. So it’s enough little imbalance between Q and Q_bar and the 

inverters generate a signal either to Vdd or GND. Basically we are using the positive loop to amplify the 

voltage. 

 

Let’s consider a situation with Vdd/2 + delta(V) on BL and Vdd/2 – delta(V) on BL_bar. At a certain 

point we turn on the bistable element with SE = 1. 

NB: BL and BL_bar are floating, there is no low impedance path towards Vdd or GND. 

When the bistable element is powered, it amplifies the voltage difference on BL and BL_bar, and the 

signal on BL goes to Vdd, the other to GND. 

 

If we suppose that the node x is connected to a DRAM cell, we have also refreshed the content of the cell 

(storage capacitor). 

This is a very good amplifier solution with the input node corresponding to the output node but we have 

to cope with the fact that the DRAM cell is single-ended, so we need to create a differential structure to 

use this amplifier. 

 

The simplest way to create a differential architecture is to double the memory. On the left we put the true 

array, and on the right the complement array (BL_bar instead of Vref, with a complement value). 

So on one side we have an increase of Vdd/2 + delta(V), on the other Vdd/2 – delta(V).  

The main drawback of this solution is that we are doubling the area, we are storing a bit using two 

transistors and two capacitors, so we are halvening the integration density. Since this drawback is too 

critical, we need another solution. 

 

 

 

x 
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OPEN BITLINE ARCHITECTURE WITH DUMMY CELLS 

It’s the most adopted architecture. Dummy cells are the ones in the gray boxes, and in the middle we can 

recognize the sense amplifier. On the top we have the precharge circuitry, done at Vdd/2 with nMOS 

transistors, so we can use them. In the middle we have an equalization transistor that works as a 

resistance. 

 

If we neglect the dummy cells, we have the bit line left cell (BLL0), and on the right BLR. We have to 

imagine that these are a lot of bit lines stacked, so this structure is replicated vertically. Lines that run 

vertically are the WL, called L0, L1, R0, R1, … . So we have split the array in two halves, and in the 

middle there is the sense amplifier and the equalization circuit. But they are not complementary, we have 

bundle of cells on the left and on the right, but not complementary cells. Dummy cells are not mandatory 

for the correct working for the gate, but useful. In an ideal environment they are useless, but since we 

work in an environment with a lot of noise, they are needed. 

 

Let’s rewrite the circuit. SA is the sense amplifier, and on top we have the precharge circuit at Vdd/2. To 

simplify the analysis, let’s consider only two cells, one on the left and one on the right. The one on the 

left is connected to WLL0 and the one on the right to WLR0. 

 

The first step is to precharge to Vdd/2 BLL and BLR, with all the WL = 0. So we precharge just the 

parasitic capacitances Cbl, that are in the order of pF, at Vdd/2, with all the cells disconnected from the 

BLs, otherwise we overwrite all the cells to Vdd/2. 

 

The second step is the activation of the WL of interest, one at a time, so e.g. WLL0 = 1. The BL that 

changes in terms of voltage is BLL, since the other is not connected because the SA behaves as an open 

circuit since it’s not active. So the activation of WLL0 makes the voltage on capacitance x change. The 

voltage can increase or decrease depending on the content of the cell. Let’s suppose that is discharged to 

Vdd – Vt*, affected by body effect. 

 

Once we raise WLL0 to BLL we have charge sharing between the two capacitances and voltage on BLL 

increases to Vdd/2 + delta(V). 

 

x 
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The third step is the activation of the sense amplifier, at which input we have Vdd/2 + delta(V) on the 

left and Vdd/2 on the right. The sense amplifier amplifies the voltage difference, the voltage on the left 

goes to Vdd and the one on the right to 0V. During this phase, WLL0 remains at logical 1, so that the 

amplification allows the voltage to reach Vdd. In this way we also refresh the content of the cell. 

 

During phase 2, the voltage across the storage capacitance Cx is no more Vdd – Vt*, but it goes to Vdd/2 

+ delta(V) because of charge sharing, we have the same voltage on the BL capacitance and on the storage 

capacitance. So it’s like if we have destroyed the content of the cell. 

However, if WLL0 remains to 1 during the third phase, both the voltages on BLL and Cx are brought to 

Vdd. However, in reality the capacitance Cx is not charged to Vdd. Actually, it’s Vdd – Vt* because we 

have the nMOS transistor. The nMOS turns off even if WLL0 is a logical 1, because the Vgs goest below 

Vt. So during the third phase we have amplification and regeneration. 

 

If we want to read a cell on the right we have to repeat the same procedure, but instead of WLL0 we have 

to consider WLR0. 

 

This is however an ideal behaviour, considering ideal transistors that act as switches. Let’s consider that 

the switches are real circuits and that, once we have a real switch, we have also parasitic capacitances. 

 

Let’s consider a real switch with the storage capacitance Cs (Cx). Once we turn to 1 the WL signal, we 

have clock feedthrough. We have in fact 2 capacitances in series and, due to the voltage divider, the 

voltage in the middle increases. 

There is also charge sharing. In fact, every time we have a transistor we have a couple of problems that 

occur at the same time: feedthrough due to the parasitic capacitances and charge sharing. 

Once we turn on the device, we have to create a layer of electrons to activate the transistor, and these 

electrons come from the ‘surrounding world’, that are the n+ regions, so from the parasitic capacitances. 

 

These two phenomena are correlated, and the final effect is that the voltage across the two terminals 

increases. The most important point is that the two junctions at source and drain are floating nodes at 0V 

before turning on the transistor. The effect of the feedthrough and charge sharing is the same, the voltage 

at the source and drain increases. 

 

If we had an ideal switch, the voltage was 0 at the beginning on both the Cs capacitances and it remains 

that, it cannot change. These problems happen every time we have transistors in a circuit, like in the S&H 

circuit and in switched capacitors. 

Moreover, in our case we also have to deal with small signals, drops of 31mV and increase of 25mV. So 

these two mechanisms can alter the voltage on the bit lines. This is the reason why dummy cells are 

needed. 

 

We have a dummy cell for each bit line. This is not a great overhead, because the increase of area is 

negligible. In the image, the dummy cell on the left is connected to the signal L_bar, that we rename R, 

the one on the right to L. 
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Let’s see the behaviour in case of digital noise, that is charge sharing, capacitive coupling, feedthrough, 

and how the dummy cells are able to make the architecture immune to digital noise. Again, let’s redesign 

the circuit. Let’s consider only one cell, with WLL0 and WLR0. Let’s suppose a zero is stored on the left 

cell and I want to read it. In green we have the dummy cell, connected to another WL signal that is R or 

L. It is completely equivalent to another cell, so we have a storage capacitance. 

 

Let’s do the same steps done previously and see what happens in presence of real signals. As a first step 

we precharge, so the parasitic capacitances BLR and BLL are charged to Vdd/2. 

The second step is the activation of the WL, so we pull up WLL0 to Vdd, the others remain at 0. If we 

don’t use the dummy cells, we have the parasitic capacitances, a voltage Vdd/2 on BLL which drops to 

Vdd/2 minus something. But since there are the parasitic elements, we have the effect of the feedthrough 

(blue), which means a voltage rise on BLL which is opposite to the drop on the BLL, which is the one 

we want to read. 

 

If the capacitive coupling is large enough, the digital noise can cancel the real signal we want to read, this 

is the real problem. 

To make the memory immune to this kind of noise we use the dummy cells. During the precharge phase, 

also the signal R and L are pulled up to 1, so that we precharge also the storage capacitance inside the 

dummy cell, not only we precharge BLL and BLR. 

Once we precharged BLL and BLR, the voltage across the dummy cells is Vdd/2, not a logical 1 or 0. 

 

Then we need to introduce an intermediate step. After the precharge of BLL and BLR and of the dummy 

cell, PC signal is pulled down, so we have written the cell but then deactivated it. 
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Now we want to read WLL0. It is pulled up to 1, and at the same time we pull up the dummy word line 

on the opposite side, that in this case is L.  

 

The third step is the activation of the sense amplifier. 

 

Graphs of all the waveforms 

Main signals involved are PC, L and R, and the last two follow PC at the beginning. Then we want to 

read WLL0, which at the beginning is 0 and then we rise it. Once we want to read WLL0, we activate 

also the L signal. As for BLL and BLLR, one starts from 0 and one 1 (let’s suppose), and both are both 

to Vdd/2 (equalized value) during the precharge phase. Then they remain floating; to be honest, the 

activation of the WLL0 happens just after the PC is ended, so time has been exaggerated on the plots. 

 

Since in the left cell there was a 0, from an ideal standpoint BLL decreases a little and BLR remains at 

Vdd/2, constant. Then somewhere I have to activate the sense amplifier to amplify the difference. Once 

I do this, BLR goes to Vdd and BLL to 0V. Then we have the refresh of the memory. 

 

However, this is an ideal behaviour without considering noise. The activation of the dummy cell is able 

to cancel the noise because we are creating noise on both sides (left and right), we create a common 

mode noise thanks to the dummy cell, and the sense amplifier is capable of reading a differential signal. 

 

So dummy cells are not needed if the switches were ideal. 
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